Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 2 и 6. объем параллелепипеда равен 48. найдите третье ребро параллелепипеда, выходящее из той же вершины.
Если известна только гипотенуза, можно найти лишь интервал в котором будет расположен размер высоты. В этом легко наглядно добиться, если нарисовать окружность и принять диаметр в ней за гипотенузу. Любой треугольник в этой окружности с имеющейся гипотенузой и катетами, проведёнными к любой точке окружности будет прямоугольным, так ка вписанный угол опирается на дугу в 180°. Очевидно, что высоты эти тр-ков будут разными, но наибольшая высота будет равна радиусу окружности, то есть половине гипотенузы. h=√((c/2)·(c/2))=√(c²/4)=c/2.
Допустим у нас есть два равных треугольника АВС и А1В1С1, АМ и А1М1 - их соответственные медианы, проведенные к сторонам ВС и В1С1 соответственно тогда ВМ = МС, В1М1 = М1С1 (АМ и А1М1 - медианы), а раз ВС = В1С1, то все педидущие четыре отрезка равны: ВМ = МС = В1М1 = М1С1 далее уголВ = углуВ1(соответствующие углы равных треугольников) АВ = А1В1 (соответствующие стороны равных треугольников)
на основании выше изложенного делаем вывод, что тр.АВМ = тр.А1В1М1(по двум сторонам и углу между ними) а уже на основании равенства треугольников АВМ и А1В1М1 делаем вывод о равенстве наших медиан АМ и А1М1, что и требовалось доказать
V=a·b·c V=48 a=2 b=6 c-? 48=2·6·c 48=12·c c=48:12 c=4
ответ 4