На большей стороне биссектриса прямого угла отсекает отрезок, равный боковой (меньшей) стороне. Оставшийся отрезок большей стороны является стороной треугольника, в котором можно определить биссектрису, а два прилегающие к ней угла известны: 30° и 180-45 = 135°. Биссектрису определим из площади: обозначим боковую сторону х. Площадь 12,5 = (1/2)*х*х х² = 25 х = 5. Биссектриса будет равна 5√2. По теореме синусов определяем отрезок большей стороны: в = ((5√2)*sin 30) / sin(180-30-135) = 13.660254 см. Тогда большая сторона равна 5 + 13.660254 = 18.660254 см. Площадь прямоугольника равна 5* 18.660254 = 93.30127 см².
Дан треугольник АВС, СL - биссектриса. Точка К лежит на CL. Сделаем рисунок. На стороне ВС отложим длину СМ=АС. Соединим К и М. Треугольники АСК и МСК равны по двум сторонам и углу между ними. КМ=АК По условию задачи ВС=АС+АК Тогда КМ= ВМ, и треугольник ВМК - равнобедренный. Угол КМС равен углу САК из доказанного выше равенства треугольников. Угол КМС - внешний угол при вершине М треугольника ВМК и равен сумме несмежных с ним внутренних углов. Так как углы КВМ и МКВ равны, ∠ КМС=2∠СВК, а значит, что и ∠САК равен 2∠СВК, что и требовалось доказать.
Пусть a,b,c- три измерения параллелепипеда,тогда по теореме Пифагора: a^2+b^2=49;
a^2+c^2=64;
b^2+c^2=81.
Сложив эти три равенства(как в системе),получим:
2a^2+2b^2+2c^2=49+64+81=194;
2( a^2+b^2+c^2)=194;
a^2+b^2+c^2 =87.
Так как d^2= a^2+b^2+c^2, то d=sqrt(87)=9.33