Прямая ок перпендикулярна к плоскости ромба abcd, диагонали которого пересекаются в точке о. а) докажите, что расстояния от точки к до всех прямых, содержащих стороны ромба, равны, б) найдите это расстояние, если ок = 4,5 дм, ас = 6 дм, bd = 8 дм.
Ромб АВСД, АС=6, ВД=8, диагонали ромба при пересечении делятся пополам и пересекаются под углом 90, диагонали делят ромб на 4 равных прямоугольных треугольника, АВ=ВС=СД=АД=корень(АО в квадрате+ВО в квадрате)=корень(9+16)=5, проводим из точки О перпендикуляры на АВ - ОМ, на ВС-ОН, на СД-ОТ, на АД-ОЕ, соединяем их с точкой К, если треугольники в роьбе равны , то и высоты тоже равны, ОМ=ОН=ОС=ОЕ, треугольникОМК=ОНК=ОТК=ОЕК как прямоугольные треугольники по двум катетам, ОК-общий , вторые см. ранеее, значит МК=НК=ТК=ЕК, АМ =АО в квадрате/АВ=9/5, ВМ=ВО в квадрате/АВ=16/5, ОМ=корень(АМ*ВМ)=корень(9/5 * 16/5)=12/5=2,4, треугольникОМК прямоугольный, МК=корень(ОМ в квадрате+ОК в квадрате)=корень(5,76+20,25)=5,1
Расстояние от точки до прямой находится на перпендикуляре к прямой))) основания трапеции параллельны, т.е. для них перпендикуляр общий... этот перпендикуляр будет состоять из двух высот для треугольников, опирающихся на основания трапеции... одно основание меньше, другое больше --- это дано))) треугольники, опирающиеся на основания трапеции подобны --- у них равные углы (вертикальный и накрест лежащие при параллельных основаниях трапеции))) следовательно, существует коэффициент подобия, равный отношению сторон, в том числе и оснований трапеции... k = a / b, a < b ---> k ≠ 1 этот же коэффициент связывает и высоты подобных треугольников, и получим, что в меньшем треугольнике и высота меньше))) ЧиТД
трапеция АВСД, МН-отрезок, ВС=1, АД=6, МН=4, продлеваем боковые стороны до пересечения их в точке О, треугольник АОС подобен треуг.МОН и ВОС по двум равным соответственным углам при основании треугольников, в подобных треугольниках площади относятся как квадраты соответствующих сторон, ВС²/АД²=S треуг.ВОС /S треуг.АОД, 1/36=S ΔВОС/S ΔАОД, S ΔВОС= SΔАОД/36, МН²/АД²=S ΔМОН/S ΔАОД, 16/36=S ΔМОН/S ΔАОД, S ΔМОН=16S ΔАОД/36, S трап.МВСН=S ΔМОН-S ΔВОС=16S ΔАОД/36 - S ΔАОД/36=15S ΔАОД/36, S трапец.АМНД=S ΔАОД - S ΔМОН=S ΔАОД - 15S ΔАОД/36=21S ΔАОД/36, трап.МВСН / трапец.АМНД = (15S ΔАОД/36) / (21S ΔАОД/36)=15/21=5/7