1. Внешний угол тр-ка равен сумме двух не смежных с ним углов. Их отношение друг к другу равно 1:4, то есть они равны Х и 4*Х градусов. Итак Х+4*Х=5*Х=15°. Отсюда Х=3°. Значит наибольший из этих углов равен 3*4=12° 2. Окружность равна 360°. Дуга в 7/18 окружности равны 360*7/18=140°. Вписанный угол равен половине градусной меры дуги, на которую он опирается, то есть 70°. 3. Для того, чтобы четырёхугольник был описанным, необходимо и достаточно, чтобы он был выпуклым и имел равные суммы противоположных сторон. У нашего четырехугольника стороны равны Х, 6*Х, 9*Х. Тогда Х+9*Х = 6*Х+Y и каждая из этих равных сумм равна половине периметра четырехугольника, то есть = 10. Тогда Х= 10-9=1. Стороны равны: 1, 6, 9 и 4 (10-6). Значит большая сторона равна 9.
Нарисуй ромб и проведи в нем диагонали. они разобьют ромб на 4 равных прямоугольных треугольника. рассмотрим один из них. пусть меньший угол в треугольнике равен х, тогда второй угол будет х+40*. так как диагонали ромба являются биссектрисами его углов, то получим в ромбе углв равные: 2х, 2(х+40), 2х, 2(х+40). по теореме о сумме углов четырехугольника составим уравнение: 2х+2х+2(х+40)+2(х+40)=360 2х+2х+2х+80+2х+80=360 8х+160=360 8х=200 х=25* значит, меньший угол ромба будет 2*25=50 градусов найдем второй угол: 2(25+40)=130* больший угол ромба. ответ: углы ромба- два угла по 50*, два угла по 130*
2. Окружность равна 360°. Дуга в 7/18 окружности равны 360*7/18=140°. Вписанный угол равен половине градусной меры дуги, на которую он опирается, то есть 70°.
3. Для того, чтобы четырёхугольник был описанным, необходимо и достаточно, чтобы он был выпуклым и имел равные суммы противоположных сторон. У нашего четырехугольника стороны равны Х, 6*Х, 9*Х. Тогда Х+9*Х = 6*Х+Y и каждая из этих равных сумм равна половине периметра четырехугольника, то есть = 10. Тогда Х= 10-9=1. Стороны равны: 1, 6, 9 и 4 (10-6). Значит большая сторона равна 9.