Объяснение:
У ромба 2 пары равных внутренних углов, сумма которых равна 360°.
Пусть тупой угол равен 2х, тогда острый будет х. Получаем: 2*2х+2х=360
6х=360
х=60.
Значит острый угол ромба равен 60°, а тупой 120°.
Площадь ромба равна половине произведения его диагоналей.
Найдем диагонали.
Известно, что диагонали ромба делят внутренние углы пополами и пересекаются под прямым углом. Исходя из этого, приняв, что диагонали ромба пересекаются в точке О и ∠АВС - тупой, рассмотрим ΔВСО.
Он прямоугольный с ∠ОСВ= 30° и ∠ОВС=60° при гипотенузе ВС. Значит его катет ВО = ВС·sin30° = 3√3,
катет СО=ВС·sin60° = 6√3 · √3 ÷2 = 9
Мы определили длины половин диагоналей ромба.
Тогда площадь ромба АВСD равна
3√3 × 9 × 2 = 54√3 =
ответ: на рисунке))
Объяснение:
прямые, лежащие в одной плоскости, либо параллельны,
либо пересекаются... сечение -многоугольник, вершины которого лежат на ребрах многогранника, стороны которого принадлежат граням многогранника -это линии пересечения плоскости сечения с плоскостями-гранями...
по условию заданы прямые MN∈(ABCD) и NP∈(CDD1C1);
MN может пересечься с прямыми, лежащими в плоскости (ABCD):
это АВ (которая принадлежит и плоскости (ABB1A1))
и ВС (которая принадлежит и плоскости (BCC1B1))...
результат построения можно проверить по теореме: две параллельные плоскости при пересечении с третьей плоскостью (сечением) дадут параллельные линии пересечения...