Відповідь:
Окружность (О; r)
∠OBA = 30°
CA — касательная
Найти:
∠BAC — ?
1) Так как радиусы окружности равны, значит, две стороны треугольника ABO равны. ⇒ ΔABO равнобедренный (AO = OB).
У равнобедренного треугольника углы при основании равны, следовательно: ∠OBA = ∠OAB = 30°.
2) Касательная к окружности перпендикулярна радиусу, проведённому в точку касания, значит CA ⊥ OA. ∠OAC = 90°.
3) ∠BAC = ∠OAC - ∠OAB.
∠BAC = 90° - 30° = 60°.
ОТВЕТ: 60°
Быстрое решение (пояснения писать обязательно нужно):
1) ΔABO равнобедренный, так как радиусы окружности, составляющие стороны треугольника, равны (AO = OB). Следовательно, ∠OBA = ∠OAB = 30°.
По свойству касательной, CA ⊥ OA ⇒ ∠OAC = 90°. Значит:
2) ∠BAC = 90° - 30° = 60°
ОТВЕТ: 60°
Пояснення:
Смотри картинку
ось вращения проходит через вершину против стороны 13 и _|_ стороне 14
фигура вращения получится --- такая воронка...
радиус основания --- 14
боковая "образующая" --- 13
и внутрь конусообразная воронка с образующей конуса 15...
нужно найти и высоту конуса h и радиус основания конуса r...
сначала посмотрим бОльший угол --- острый или тупой??
15^2 = 13^2 + 14^2 - 2*13*14*cosa
cosa = (169+196-225) / 364 = 140/364 = 5/13 --- угол острый
в треугольнике проведем высоту параллельно оси вращения...
по определению косинуса получается, что высота разбивает сторону 14 на
отрезки 5 и 9
9 --- это будет радиус конуса-воронки (r)...
по т.Пифагора высота этой воронки h^2 = 15^2 - 9^2 = (15-9)(15+9) = 6*24
h = 6*2 = 12 ----------- а она и не понадобилась...
площадь поверхности фигуры вращения будет состоять из трех частей:
1)) площадь круга-основания R=14
S = pi*R^2 = 196*pi
2)) боковой части --- трапеции высотой 13 и
с основаниями-длинами окружностей с радиусами R и r
Sтрапеции = (2*pi*R + 2*pi*r) * 13/2 = 13*pi*(R+r) = 13*pi*23 = 299*pi
3)) боковой поверхности конуса-воронки
Sбок.конуса = pi*r*15 = pi*9*15 = 135*pi
площадь поверхности фигуры вращения = 196*pi + 299*pi + 135*pi = 630*pi