відповідь:
пояснення:
проекция вершины s на основание , есть точка пересечения диагоналей квадрата abcd .
положим что это точка h .
l,k середины as, cs соответсвенно , также положим что b1k пересекает bc в точке x , можно теореме менелая , тогда
bb1/b1s * sk/kc * cx/bx=1
или (20-5)/5*(1/1)* (cx/(24+cx))=1 , откуда cx=12 , значит bx=36. аналогично если y точка пересечения lb1 с ab , тогда by=36 .
опустим высоту из точки b1 на основание , основание высоты n будет лежат на диагонали . найдём b1n , подобия треугольников shb и b1nb , тогда sh/b1n = 4/3
по теореме пифагора sh=sqrt(bs^2 - bh^2) = sqrt(bs^2-(bd/2)^2) = sqrt(20^2-(12 sqrt()= sqrt(112) , значит b1n = 3*sqrt(7) и bn=sqrt(15^2-9*7)=9*sqrt(2) . xby равнобедренный и прямоугольный треугольник , положим что m точка пересечения bn и xy , тогда bm=36*sqrt(2) , и mn=bm-bn= 36*sqrt(2)-9*sqrt(2) = 27*sqrt(2) .
тогда если "a" это угол между плослкостью основания и данной плосокостью то
tga=b1n/mn = 3*sqrt(7) / 27*sqrt(2) = sqrt(14)/18 , откуда
a=arctg(sqrt(14)/18) .
2. 336.
4. 64.
Объяснение:
2) ABCD - прямоугольник => BC = AD = 28 см ; AC = BD, AO = OC = BO = OD =>
треугольник AOB равнобедренный, AD - основание.
OH - высота (по условию) => OH - медиана (по теореме о высоте, проведенной из вершины равнобедренного треугольника) => AH = HB.
AO = OC, AH = HD => OH - средняя линия треугольника ADC => OH = 1/2 * DC =>
DC = 6 * 2 = 12 см.
Площадь ABCD = AD * DC = 28 * 12 = 336 см квадратных.
ответ : 336 см квадратных.
4) Достроим прямую AB и точку M до прямоугольника KBCM.
ABCD - квадрат => AB = BC = DC = AD = MD.
Площадь треугольника MBC = 1/2 * MC * BC.
MC = 2 * AB, BC = AB => Площадь треугольника MBC = 1/2 * 2 * AB * AB = AB^2 (AB в квадрате).
64 = AB^2;
AB = (корень из 64)
AB = 8 см.
Площадь квадрата ABCD = AB^2.
Площадь квадрата ABCD = 8 * 8 = 64 см квадратных.
ответ : 64 см квадратных.
AB =
sinA =
AB =
ответ: 15