Не могу нарисовать рисунок, но попытаюсь объяснить.
Пусть имеется прямоугольный треугольник ABC с гипотенузой AC и прямым углом при вершине В.
Пусть точка О – пересечение заданных биссектрис. Один из углов при О = 100 градусов
Вариант 1.
Расcмотрим треугольник ABO. Угол AOB=100, угол ABO=45 (потому что BO – биссектриса угла В, который 90 град)
Тогда угол BAO=180-100-45=35
Угол BAC вдвое больше BAO и равен 35*2=70.
Оставшийся уголACB =180-90-70=20.
Вариант 2.
(если вдруг возникнет иллюзия считать, что распределение углов при точке О другое – то есть 100 град = угол AOD, где точка В – точка пересечения биссектрисы из вершины B со стороной AC, То в таком случае:
Всё равно рассмотрим треугольник ABO. Только угол AOB=180-100=80. угол ABO всё равно 45 (потому что BO – биссектриса угла В, который 90 град)
Тогда угол BAO=180-80-45=55.
Угол BAC в этом случае вдвое больше BAO и равен 55*2=110. И тут упс – сумма двух углов начального прямоугольного треугольника уже становится больше 180, а ведь есть ещё и третий угол. Поэтому распределение углов при точке О только такое, как в первом варианте решения. Второй вариант нежизне
Нехай даний рівнобедрений трикутник ABC з основою AC=b і кутом при основі A=C=a
Нехай BD-висота, опущена основу
Тоді. AD=CD=AB*cos A=b cos a
BD=AB*sin A=b *sin a
Радіус вписаного кола дорівнює відношенню площі кола до півпериметра
Площа триктуника дорівнює половині дожини основи на висоту
S=bcos a*b*sin a=1\2*b^2*sin 2a
Півпериметр дорівнює p=(b+b+2bcos a)\2=b*(1+2cos a)\2
Радіус вписаного кола =S\p=b^2\2 *sin 2a\(b(1+2cos a)\2)=
b*sin 2a\(1+2cos a)
Відповідь b*sin 2a\(1+2cos a)
ніби так