DOA = 70°. Дано в задаче.
BOC = DOA = 70°. Вертикальные углы равны (1).
DOC = 180° - 70° - 110°. Смежные углы в сумме дают 180° (2).
AOB = DOC = 110°. (1).
ODC = (180° - 110°) / 2 = 35°. Сумма углов треугольника равна 180° (3). Если треугольник равнобедренный, то углы при его основаниях равны (4).
ADO = 90° - 35° = 55°. Два угла составляют прямой угол (5).
OAD = ADO = 55°. (4).
OAB = 90° - 55° = 35°. (5).
OBA = OAB = 35°. (4).
OBC = 90° - 35° = 55°. (5).
OCB = OBC = 55°. (4).
Все остальные углы состоят из других и их можно посчитать по сумме. Например:
DAB = DAO + BAO = 55° + 35° = 90°.
l² = r² + h² ⇒ h² = 225 - 144 = 81 ⇒ h = 9 (cм) - высота конуса
В прямоугольном треугольнике с гипотенузой (образующая конуса) l = 15 см и катетом (половина хорды) а = 18 : 2 = 9 см, по т. Пифагора
l² = а² + с² ⇒ с² = 225 - 81 = 144 ⇒
с = 12 (cм) - высота СЕЧЕНИЯ проведенная к основанию 2а = 18.
Площадь треугольника (сечения) с основанием 18 см и высотой 12 см
S = 1/2 * 18 * 12 = 108 (cм²) - площадь сечения