Цитаты: "Двугранный угол — пространственная геометрическая фигура, образованная двумя полуплоскостями, исходящими из одной прямой, а также часть пространства, ограниченная этими полуплоскостями". "Двугранные углы измеряются линейным углом, то есть углом, образованным пересечением двугранного угла с плоскостью, перпендикулярной к его ребру". В нашем случае двугранный угол C1ADC - это угол, образованный двумя полуплоскостями, исходящими из одной прямой AD и проходящими через точки С1 и С. Он измеряется линейным углом С1DС, так как плоскость CDC1 перпендикулярна ребру АD. Тогда по Пифагору DС = √(АС²-AD²) = √(АС²-AD²) =√(625-336) = 17. Тангенс угла tg(<С1DC) = СС1/DC (отношение противолежащего катета к прилежащему) = 17/17 =1. Значит искомое значение градусной меры двугранного угла C1ADC равна 45°.
1. Пирамида - это многогранник, одна грань которого многоугольник, а остальные грани - треугольники с общей вершиной. Пирамида называется правильной, если в основании лежит правильный многоугольник и высота пирамиды проходит через центр многоугольника. Пирамида называется усеченной, если вершина её отсекается плоскостью
2. Призма - многогранник, две грани которого (основания призмы) представляют собой равные многоугольники с взаимно параллельными сторонами, а все другие грани параллелограммы. Призма называется прямой, если её ребра перпендикулярны плоскости основания. Если основанием призмы является прямоугольник, призму называют параллелепипедом
3. Призматоид - многогранник, ограниченный двумя многоугольниками, расположенными в параллельных плоскостях (они являются его основаниями); его боковые грани представляют собой треугольники или трапеции, вершины которых являются и вершинами многоугольников оснований
4. Тела Платона. Многогранник, все грани которого представляют собой правильные и равные многоугольники, называют правильными. Углы при вершинах такого многогранника равны между собой.
Существует пять типов правильных многогранников. Эти многогранники и их свойства были описаны более двух тысяч лет назад древнегреческим философом Платоном, чем и объясняется их общее название.
Каждому правильному многограннику соответствует другой правильный многогранник с числом граней, равным числу вершин данного многогранника. Число ребер у обоих многогранников одинаково.
Тетраэдр - правильный четырехгранник Он ограничен четырьмя равносторонними треугольниками (это - правильная треугольная пирамида).
Гексаэдр - правильный шестигранник. Это куб состоящий из шести равных квадратов.
Октаэдр - правильный восьмигранник Он состоит из восьми равносторонних и равных между собой треугольников, соединенных по четыре у каждой вершины.
Додекаэдр - правильный двенадцатигранник, состоит из двенадцати правильных и равных пятиугольников, соединенных по три около каждой вершины
Икосаэдр - состоит из 20 равносторонних и равных треугольников, соединенных по пять около каждой вершины
равнобедренный треугольник вписанный круг, который делит боковую сторону в отношение 2 : 3, начиная от вершины, что лежит против основы. Найдите периметр треугольника, если его основа равна 12 см.Треугольник АВС, АВ=ВС, АС=12, точка М касание на АВ, точка Н касание на ВС, точка К касание на АС, ВМ/АМ=2/3 = ВН/СН, АМ=АК как касательные проведенные из одной точки =3, СК=СН как касательные проведенные из одной точки = 3АС=АК+СК=3+3=6 = 12 см1 часть=12/6=2АВ=3+2=5 частей = 5 х 2 =10 = ВСпериметр = 10+10+12=32
"Двугранный угол — пространственная геометрическая фигура, образованная двумя полуплоскостями, исходящими из одной прямой, а также часть пространства, ограниченная этими полуплоскостями".
"Двугранные углы измеряются линейным углом, то есть углом, образованным пересечением двугранного угла с плоскостью, перпендикулярной к его ребру".
В нашем случае двугранный угол C1ADC - это угол, образованный двумя полуплоскостями, исходящими из одной прямой AD и проходящими через точки С1 и С. Он измеряется линейным углом С1DС, так как плоскость CDC1 перпендикулярна ребру АD.
Тогда по Пифагору DС = √(АС²-AD²) = √(АС²-AD²) =√(625-336) = 17.
Тангенс угла tg(<С1DC) = СС1/DC (отношение противолежащего катета к прилежащему) = 17/17 =1.
Значит искомое значение градусной меры двугранного угла C1ADC равна 45°.