известно, что сумма двух ЛЮБЫХ сторон треугольника a+b всегда больше третьей с a+b>c представим это в виде: a+b-c>0 добавим к обеим частям неравенства 2с: a+b-c+2c>2c a+b+c>2c (a+b+c)/2>c Поскольку в качестве a, b и с мы выбирали ЛЮБЫЕ стороны треугольника, то значит верны и неравенства: (a+b+c)/2>а (a+b+c)/2>b что и требовалось доказать. Полупериметр треугольника всегда больше любой его стороны, и любая сторона треугольника всегда меньше его полупериметра.
Обозначим параллелограмм ABCD ,биссектриса проведена из угла В к стороне AD в точке M .Угол А =180°-150°=30°(сумма соседних углов параллелограмма 180°) .∠ABM равен углу BMC =150°÷2=75°(так как BM - биссектриса) .∠BMA треугольника ABM равен 180°-75°-30°=75°,значит треугольник ABM -равнобедренный с основанием BM ,поэтому AB=AM=16 см .AD=AM+MD=16+5= 21 см .Площадь параллелограмма ABCD найдём по формуле S=a×b×sinα(где а и b стороны параллелограмма ,а α-угол между ними).S=16×21×sin30°=336×0,5=168 см² .
Так как призма прямая и в основании квадрат, все углы между ребрами прямые. Между пересекающимися боковым ребром и диагональю основания, а так же пересекающимися стороной основания и диагональю боковой грани уголы прямые (если прямая перпендикулярна плоскости, то она перпендикулярна любой прямой в этой плоскости, проходящей через точку пересечения). По теореме Пифагора находим: (17^2-15^2)=64 - квадрат диагонали основания. 64/2 = 32 - квадрат стороны основания. 32 + 15^2 = 32+225 =257 - квадрат диагонали боковой грани \|257 (см) - диагональ боковой грани
a+b>c
представим это в виде:
a+b-c>0
добавим к обеим частям неравенства 2с:
a+b-c+2c>2c
a+b+c>2c
(a+b+c)/2>c
Поскольку в качестве a, b и с мы выбирали ЛЮБЫЕ стороны треугольника, то значит верны и неравенства:
(a+b+c)/2>а
(a+b+c)/2>b
что и требовалось доказать. Полупериметр треугольника всегда больше любой его стороны, и любая сторона треугольника всегда меньше его полупериметра.