Впрямоугольном трегуольнике один катет равен 8мм , его проекция на гипотенузу 4 мм , найдите второй катет , гипотенузу и проекцию второго катета на гипотенузу
Напротив угла в 30° лежит катет в 2 раза меньше гипотенузы - у нас обратная ситуация - есть катет в 2 раза меньше гипотенузы, следовательно напротив отрезка в 4мм угол в 30°, а так как треугольник прямоугольный (именно такой получается при проецировании) то второй угол =60°, и следовательно уже в большом треугольнике напротив катета 8мм угол 30°, следовательно гипотенуза=2*8=16мм, а второй катет =√(16²-8²)=13,8564мм проекция второго катета=16-4=8мм (смотри чертёж)
Допустим у нас есть два равных треугольника АВС и А1В1С1, АМ и А1М1 - их соответственные медианы, проведенные к сторонам ВС и В1С1 соответственно тогда ВМ = МС, В1М1 = М1С1 (АМ и А1М1 - медианы), а раз ВС = В1С1, то все педидущие четыре отрезка равны: ВМ = МС = В1М1 = М1С1 далее уголВ = углуВ1(соответствующие углы равных треугольников) АВ = А1В1 (соответствующие стороны равных треугольников)
на основании выше изложенного делаем вывод, что тр.АВМ = тр.А1В1М1(по двум сторонам и углу между ними) а уже на основании равенства треугольников АВМ и А1В1М1 делаем вывод о равенстве наших медиан АМ и А1М1, что и требовалось доказать
1. Свойство касательных к окружности, проведенной из одной точки: отрезки касательных равны. х-радиус вписанной окружности (см. рисунок в приложении) Учитывая, что периметр равен 54, составляем уравнение: х+х+х+х+3+3+12+12=54 4х+30=54 4х=24 х=6
2. Из условия: ∠С=х ∠А=4х ∠В=4х-58°
Так как четырехугольник вписан в окружность, то ∠А+∠С=180° ∠В+∠Д=180°
4х+х=180° 5х=180° х=36°
Тогда ∠С=36° ∠А=4х=4·36°=144° ∠В=4х-58°=144°-58°=86°
проекция второго катета=16-4=8мм (смотри чертёж)