Две параллельные прямые пересечены секущей. при этом образовались два накрест лежащих угла, сумма которых равна 180 градусов. под каким углом секущая пересекает данные прямые?
1. сечение, проходящее через вершины B, B1, D - это диагональное сечение BDD1. Его площадь равна BD*BB1. Из прямоугольного треугольника ABD найдем BD: BD=17, тогда площадь сечения равна 17*21=357. 2. Диагональ правильной четырехугольной призмы BD1 наклонена к плоскости основания под углом 30, поэтому угол между диагональю призмы BD1 и диагональю основания B1D1 равен 30. Из полученного треугольника найдем диагональ призмы: 3. площадь боковой поверхности правильной шестиугольной призмы равна Р*Н: S=6*2*5=60. 4. Площадь основания равна 1/2*6*8= 24. Площадь боковой поверхности равна 288 - 2*24= 240. Площадь боковой поверхности равна Р*Н. Гипотенуза прямоугольного треугольника равна 10. Высота призмы равна 288/(6+8+10)=12.
Четырехугольник ABCD, К - середина АВ, L - середина ВС, M - середина CD, N - середина AD, Р - середина АС, Q - середина BD. Надо доказать, что КМ, LN и PQ пересекаются в одной точке.КN - средняя линяя в треугольнике ABD, поэтому KN II BD, KN = BD/2; точно также доказывается, что LM II BD, KL II AC, MN II AC. Поэтому KLMN - параллелограмм, в котором LN и KM - диагонали, поэтому в точке пересечения они делятся пополам, то есть КМ проходит через середину LN.С другой стороны,LQ - средняя линяя в треугольнике BCD, то есть LQ II CD, а PN - средняя линяя в треугольнике ACD, PN II CD, следовательно, PN II LQ.LP - средняя линяя в треугольнике ABC, то есть LP II AB, а QN - средняя линяя в треугольнике ABD, QN II AB, следовательно, QN II LP.Поэтому PLQN - параллелограмм, и его диагонали PQ и LN в точке пересечения делятся пополам.То есть PQ, так же как и КМ, проходит через середину LN.