Площадь параллелограмма равна произведению высоты и стороны, к которой проведена высота. Сторона параллелограмма дана ВС=19. Необходимо найти высоту h. Вообще-то она равна 14, т.е. удвоенное расстояние от точки К до стороны АВ. Надо доказать,что расстояние от точки К до стороны ВС равно расстоянию от точки К до стороны АВ. Соединим концы биссектрис углов А и В и обозначим буквами M и N. Полученная фигура ABNM - ромб. Доказывается равнобедренность треугольников ABN и AMN через равенство противолежащих углов. Проведем перпендикуляры из точки К к сторонам ВС и AD. Они равны как высоты равных треугольников и равны расстоянию от точки К к стороне АВ, т. е. равны 7. Таким образом высота параллелограмма равна 14. Площадь равна 14*19
Рассмотрим сечение комбинации тел плоскостью, проходящей через ось конуса и центр шара (Рис. 1). Для данного треугольника образующие SA=SB=L. Высота конуса SO=H. Радиус вписанного шара ОО₁=O₁F=r, a радиус основания конуса ОВ=R. Рассмотрим прямоугольный треугольник SOB. По свойству биссектрисы треугольника: SB/SO₁=OB/OO₁ ⇒ L/(H-r)=R/r. По теореме Пифагора: SB=√(SO²+OB²) ⇒ L=√(H²+R²). Таким образом: √(H²+R²)/(H-r)=R/r Подставляя различные комбинации соотношений получаем ответ. ответ: 1)В), 4)Б), 4)Д).