Треугольник АВС равносторонний, так как АВ = АС как отрезки касательных к окружности проведённых из одной точки. ∠ВАС = 60, значит ∠АВС = ∠АСВ = (180 - 60) : 2 = 60 Рассмотрим четырёхугольник АСОВ. Сумма углов четырёхугольника равна 360 . ∠АСО = ∠АВО = 90 как углы образованные радиусом окружности и касательной к окружности, Значит ∠ ВОС = 360 - 90 - 90 - 60 = 120. По теореме косинусов найдем ВС² = ВО² + ОС² - 2 * ВО * ВО* cos 120
ВС² = 400 + 400 + 2 * 400 * 0,5 = 800 + 400 = 1200
ВС = 20√3
Р = 20√3 * 3 =60√3мм²
(бро , если не сложно мне с решением моего)
Проведем окружность с центром в точке В произвольного радиуса. Точки пересечения этой окружности со сторонами угла АВС обозначим E и F.
Проведем окружность с тем же радиусом с центром в точке D. L - точка пересечения окружности с лучом DK.
Проведем окружность с центром в точке Е и радиусом EF, и такую же окружность с центром в точке L. Р - одна из точек пересечения этой окружности с первой.
Затем построим такую же окружность с центром в точке Р. Обозначим точку ее пересечения с первой окружностью N.
Через точку N проведем луч DM.
Угол MDK - искомый.
Угол А+угол В+угол С=180градусов
Х+30+105=180
Х=45
Угол А=45 градусов