1. Отрезки касательных, проведенных из одной точки, равны, значит
ВА = ВС.
Радиус, проведенный в точку касания, перпендикулярен касательной, значит
ОА⊥ВА и ОС⊥ВС.
ΔОВА = ΔОВС по гипотенузе и катету (ВО - общая, ВА = ВС), значит ВО - биссектриса угла АВС.
∠ОВА = 1/2∠АВС = 30°, тогда в прямоугольном треугольнике ОВА против угла в 30° лежит катет, равный половине гипотенузы:
ОА = 1/2 ОВ = 1/2 · 28 = 14
2. Радиус, проведенный в точку касания, перпендикулярен касательной.
Значит ΔАОВ прямоугольный и равнобедренный (АВ = ОА = 2 см). По теореме Пифагора:
ОВ = √(АВ² + ОА²) = √(4 + 4) = 2√2 см
AC^2=AB^2+BC^2-2*AB*BC*cos135
AC^2=36+18+2*6*3корень из 2* (корень из2/2)
AC^2=54+18*2=54+36=90
AC=корень из 90