2. 4+7=11 (частей) Одна часть: 44/11 = 2 Большее основание равно: 2*4=8 см Меньшее основание равно: 2*7=14 см
3. Диагонали делят острые углы трапеции пополам => получаем ромб, у которого все стороны равны 8 см. Р=8+8+8+10=34 см
4. Имеем трапецию ABCD. Основания - AD, BC. Диагонали пересекаются в точке P. MN - средняя линия, пересекаемая сторону BD в точке О и AC в точке K. В треугольнике ABC средняя линия MK равна 1/2*BC, а средняя линия KN в треугольнике ACD = 1/2*AD. Треугольник BCP одновременно прямоугольный и равнобедренный, соответственно высота, опущенная из точки P к вершине, является медианой. Она равна 1/2*BC. В треугольнике APD, высота, опущенная из точки P, - медиана. Равна 1/2*AD. Что и требовалось доказать.
Дано: круг с центром А радиусом R = 15см; круг с центром D радиусом R =15 см; AD = 15 см Найти: площадь криволинейной фигуры CABD
Криволинейная фигура CABD состоит из двух сегментов: CAB и CDB. Достаточно найти площадь одного из них, например, CAB.
ΔACD = ΔABD: AB = BD = AC = CD = AD = R = 15 см ⇒ ∠CAD = ∠BAD = ∠CDA = ∠BDA = 60° ⇒ ∠BAC= ∠BDC = 2*60° = 120° Площадь сегмента CAB равна площади сектора DCAB минус площадь треугольника DCB.