1)Раз АВ = 7, то и СD = 7, диагонали в точке пересечения делятся пополам. В итоге: АО = 3, ВО = 5, АВ = 7. ответ: 3+5+7=15 см
2)Площадь трапеции вычисляется по формуле: (ВС+АД)/2×ВН. на рисунке изображена равнобедренная трапеция: АВ=СД=4. Проведём из вершин В и С две высоты к нижнему основанию АД: ВН и СК. Они делят АД так что ВС=НК=5, а АН=КД. Рассмотрим полученный ∆АВН. Он прямоугольный и в нём АН и ВН- катеты, а АВ - гипотенуза. <А=60°, а сумма острых углов прямоугольного треугольника составляет 90°, поэтому <АВН=90–60=30°. Катет АН, лежащий напротив угла 30° равен половине гипотенузы, поэтому АН=АВ÷2=4÷2=2.
Теперь найдём ВН по теореме Пифагора:
ВН ²=АВ²–АН²=4²–2²=16–4=12; ВН=СК=√12=2√3
Если АН=КД=2, а НК=5, тогда
АД=2×2+5=4+5=9.
Теперь найдём площадь трапеции зная её высоту и оба основания:
S=(5+9)/2×2√3=14÷2×2√3=14√3
Объяснение:
я не умею но решение по теме
1)Раз АВ = 7, то и СD = 7, диагонали в точке пересечения делятся пополам. В итоге: АО = 3, ВО = 5, АВ = 7. ответ: 3+5+7=15 см
2)Площадь трапеции вычисляется по формуле: (ВС+АД)/2×ВН. на рисунке изображена равнобедренная трапеция: АВ=СД=4. Проведём из вершин В и С две высоты к нижнему основанию АД: ВН и СК. Они делят АД так что ВС=НК=5, а АН=КД. Рассмотрим полученный ∆АВН. Он прямоугольный и в нём АН и ВН- катеты, а АВ - гипотенуза. <А=60°, а сумма острых углов прямоугольного треугольника составляет 90°, поэтому <АВН=90–60=30°. Катет АН, лежащий напротив угла 30° равен половине гипотенузы, поэтому АН=АВ÷2=4÷2=2.
Теперь найдём ВН по теореме Пифагора:
ВН ²=АВ²–АН²=4²–2²=16–4=12; ВН=СК=√12=2√3
Если АН=КД=2, а НК=5, тогда
АД=2×2+5=4+5=9.
Теперь найдём площадь трапеции зная её высоту и оба основания:
S=(5+9)/2×2√3=14÷2×2√3=14√3
Объяснение:
я не умею но решение по теме
угол ABC = 120°
Найти: BH.
Решение:
1) треугольник ABC - равнобедренный (по условию), отсюда следует, что углы BAC и BCA равны и каждый из них по 30° ((180-120)/2).
2) т.к. высота в равнобедренной треугольнике является и медианой, и бессектрисой, то отсюда следует: угол ABH = 60°
AH=HC=10 см
треугольник ABH - прямоугольный( BH - высота).
3) Рассмотрим треугольник ABH:
Угол ABH = 60°
AH=10 см.
Раз SIN угла в прямоугольном треугольнике - это отношения противолежащего катета к гипотенузе, то составим пропорцию:
SIN60°=AH/AB
√3/2=10/AB
AB=10/(√3/2)
AB=20/√3
4) По теореме Пифагора находим BH:
AB²=BH²+AH²
1200=BH²+100
BH²=1200-100
BH²=1100
BH=√1100
BH=10√11
ответ: BH = 10√11.