Обозначим вершину равнобедренного треугольника с углом, равным 2а точкой А, две другие вершины, прилежащие к основанию, точками В и С. Опустим из вершины А высоту АК (она же является и биссектрисой и медианой) на основание. Центр вписанной окружности обозначим точкой О, он лежит на высоте АК. Из центра О проведем радиус ОМ, равный r и перпендикулярный боковой стороне АС. Углы ВАК и КАС равны а. Из треугольника АКС АК/АС=cos(a), АС=АК/cos(a). АК=АО+ОК. ОК=r. Из треугольника АОМ ОМ/АО=sin(a), отсюда АО=ОМ/sin(a)=r/sin(a). AK=r/sin(a)+r. Значит АС=(r/sin(a)+r)/cos(a)=r*(1/sin(a)+1)/cos(a)=r*(sin(a)+1)/(sin(a)*cos(a)=2*r*(sin(a)+1)/sin(2*a).
Нсли правильно нарисовать заданную фигуру, то получится, что ребро пирамиды- это боковая сторона получившегося равнобедренного треугольника, а диагональ основания пирамиды- это основание равнобедренного треугольника. Высота, проведенная с основанию равнобедренного треугольника, также является и медианой, и биссектрисой. Медиана делит основание пополам. Получается прямоугольный треугольник с катетом(основанием, разделенным пополам) 8√2 и гипотенузой( боковой стороной) 18. Надо найти другой катет( то есть высоту правильной четырёхугольной пирамиды) при теоремы Пифагора. Пусть гипотенуза равна с, известный катет а, а неизвестный- это b. Получится: ответ: высота правильной четырехугольной пирамиды равна 14.
Выразим параметры вписанного конуса через его переменную высоту H и заданный радиус шара R (константа). Vконуса = (1/3)SoH. Радиус ro основания конуса равен: ro² = R² - (H - R)². So = πro² = π*(R² - (H - R)²). Получаем формулу объёма: V = (1/3)*π*(R² - (H - R)²)*H. Для нахождения экстремума находим производную объёма по Н и приравниваем нулю. V'(H) = (1/3)πH*(4R - 3H) = 0. Нулю может быть равно только выражение в скобках. 4R - 3H = 0. Отсюда получаем ответ: высота конуса при максимальном объёме равна H = (4/3)R.
Значит АС=(r/sin(a)+r)/cos(a)=r*(1/sin(a)+1)/cos(a)=r*(sin(a)+1)/(sin(a)*cos(a)=2*r*(sin(a)+1)/sin(2*a).