Вариант 1. Диагональ делит угол С на два угла. Значит, сам угол С равен сумме этих двух углов, т. е. угол С=30+35=65 градусов. Противоположные углы параллелограмма равны (по определению), значит, угол А тоже равен 65 градусам. Сумма углов четырехугольника равна 360 градусов. Угол B равен углу D. Значит, угол A+B+C+D=360, отсюда, угол B+D=360-65-65=230. Т.к. они равны, то угол B=D=230/2=115 градусов.
Если сумму углов четырехугольника, не проходили, то Вариант2. BC параллельна AD и AC-секущая, тогда угол BCA=углу CAD и равен 30 градусам. Угол BAC=ACD=35 градусам. Рассмотрим треугольник ABC: В нем углы равны 30 и 35 градусов, значит, угол B=180-30-35=115 градусов. Угол B равен 115, угол С равен 65, значит, угол B - больший.
Пусть данный параллелограмм будет АВСД. Сделаем соразмерно условию рисунок и рассмотрим его. ВН высота, ⊥ АД и⊥ ВС, ВМ - высота и ⊥АВ и ⊥ прямой СД. ⇒ Угол АВМ - прямой, угол АВН=90-60º, ⇒ угол ВАН=30º ВН противолежит углу 30º, на этом основании рана половине АВ=4 см Площадь параллелограмма равна произведению его высоты на сторону, к которой она проведена. S АВСД=4*12=48 см² Так как противоположные углы параллелограмма равны, точно так же высота к ВД ( она пересекает продолжение СД) равна 12:2=6 см, Ясно, что произведение высоты ВМ и стороны СД = 6*8=48 см²
Пусть данный параллелограмм будет АВСД. Сделаем соразмерно условию рисунок и рассмотрим его. ВН высота, ⊥ АД и⊥ ВС, ВМ - высота и ⊥АВ и ⊥ прямой СД. ⇒ Угол АВМ - прямой, угол АВН=90-60º, ⇒ угол ВАН=30º ВН противолежит углу 30º, на этом основании рана половине АВ=4 см Площадь параллелограмма равна произведению его высоты на сторону, к которой она проведена. S АВСД=4*12=48 см² Так как противоположные углы параллелограмма равны, точно так же высота к ВД ( она пересекает продолжение СД) равна 12:2=6 см, Ясно, что произведение высоты ВМ и стороны СД = 6*8=48 см²
Диагональ делит угол С на два угла. Значит, сам угол С равен сумме этих двух углов, т. е. угол С=30+35=65 градусов. Противоположные углы параллелограмма равны (по определению), значит, угол А тоже равен 65 градусам. Сумма углов четырехугольника равна 360 градусов. Угол B равен углу D. Значит, угол A+B+C+D=360, отсюда, угол B+D=360-65-65=230. Т.к. они равны, то угол B=D=230/2=115 градусов.
Если сумму углов четырехугольника, не проходили, то
Вариант2.
BC параллельна AD и AC-секущая, тогда угол BCA=углу CAD и равен 30 градусам. Угол BAC=ACD=35 градусам. Рассмотрим треугольник ABC:
В нем углы равны 30 и 35 градусов, значит, угол B=180-30-35=115 градусов. Угол B равен 115, угол С равен 65, значит, угол B - больший.