Предварительные вычисления. Радиус вписанной окружности основания r = √3/6·a Радиус описанной окружности R = √3/3·а Площадь основания S = √3/4·a² а) Сечение параллельно основанию через середину высоты. Треугольник этого сечения подобен треугольнику основания с коэффициентом подобия k = 0,5 Площадь сечения относится с площадью основания как k² s₁ = S·k² = S/4 = √3/16·a² б) Сечение проходит через боковое ребро и высоту Основание треугольника сечения r+R, высота h Площадь s₂ = 1/2(r+R)h = 1/2(√3/6·a+√3/3·a)h = 1/2√3/2·ah = √3/4·ah в) сечение через сторону основания перпендикулярно противоположному боковому ребру В треугольнике из пункта и в текущем высота h₃ общая (на рисунке синяя). Найдём ей через площадь треугольника из пункта. Нам нужна длина бокового ребра пирамиды l² = h²+R² = h²+a²/3 l = √(h²+a²/3) s₂ = 1/2 h₃l √3/4·ah = 1/2 h₃√(h²+a²/3) √3/2·ah = h₃√(h²+a²/3) h₃ = √3·ah/(2√(h²+a²/3)) s₃ = 1/2·h₃a = √3·a²h/(4√(h²+a²/3)) = 3a²h/(4√(3h²+a²)) г) сечение через центр основания параллельно боковой грани Треугольник этого сечения параллелен и подобен боковой грани пирамиды с коэффициентом подобия k = R/(R+r) = 2/3 Найдём плошадь боковой стороны Её высота (синяя) l² = h²+r² = h²+3/36·a² = h²+a²/12 l = √(h²+a²/12) площадь боковой стороны s = 1/2·al = 1/2·a√(h²+a²/12) площадь сечения s₄ = k²s = 4/9·1/2·a√(h²+a²/12) = 2/9·a√(h²+a²/12) д) Сечение через середины четырех ребер Такое сечение можно построить только проходящим через середины двух рёбер основания и двух боковых рёбер Сечение имеет форму четырёхугольника (или равносторонняя трапеция или прямоугольник) Нижнее ребро b₁ - средняя линия основания, его длина b₁ = a/2 Боковое b₂ и b₄ - средняя линия боковой грани и в два раза короче бокового ребра, длину его вычисляли раньше √(h²+a²/3) b₂ = b₄ = (√(h²+a²/3))/2 верхнее ребро b₃ - средняя линия боковой грани, проведённая параллельно основанию, его длина b₃ = a/2 Итого - у нас прямоугольник с площадью s₅ = a/2·(√(h²+a²/3))/2 = (a√(h²+a²/3))/4
3 + 9 = 12(см) - гипотенуза
Высота, опущенная из вершины прямого угла делит треугольник на два тр-ка, подобных исходному.
Из подобия треугольников:
1) катет в относится к своей проекции 3, как гипотенуза 12 относится к катету в:
в:3 = 12:в, откуда
в² = 36 и
в = 6.
2) катет а относится к своей проекции 9, как гипотенуза 12 относится к катету а:
а:9 = 12:а, откуда
а² = 108 и
а = 6√3.
ответ: катеты тр-ка равны 6см и 6√3см