Объяснение: Для прямоугольных треугольников должна выполняться теорема Пифагора - сумма квадратов катетов = квадрату гипотенузы. Гипотенуза в прямоугольном треугольнике самая большая сторона. Тогда имеем:
2) 11² +20² =? 25² т.е 121 + 400 = 521, 25² = 625. Прямоугольный треугольник такие стороны иметь не может, так как 521 ≠ 625
3) 18² + 24² =? 30² т.е. 324 + 576 = 900, 30² = 900. Такие стороны треугольник может иметь, так как условие теоремы Пифагора 18² + 24² = 30² выполняется.
4) 9² + 12² =? 15², т.е. 81 + 144 = 225, 15² = 225. Такие стороны треугольник может иметь, так как условие теоремы Пифагора 9² + 12² = 15² выполняется.
Условие задачи 1) не ясно. Решить нельзя.
Четырёхугольник можно вписать в окружность в том случае, если сумма противолежащих углов четырёхугольника равна 180 градусов. По условию четырёхугольник вписан в окружность. Значит и сумма противоположных углов равна 180. Отсюда имеем:
115 + х = 180 , > х = 180 - 115 = 65 градусов.
63 + х = 180, > х = 180 - 63 = 117 градусов.
Следовательно, градусные меры остальных углов 4-угольника соответственно равны 65 и 117 градусов. Кроме того, в сумме градусные меры 4 углов 4-угольника дают 360 градусов, что говорит об истинности решения.
ответ: 65 и 117