Вот........
ЭТА ЗАДАЧА ПО ГЕОМЕТРИИ КАК ДОКАЗАТЬ
ТУТ ПИШЕМ ПРЯМО ЧТО МЫ ДЕЛАЕМ А ПОТОМ И РЕШАЕМ.
Если не понятен почерк вот решение
Пусть К — точка пересечения биссектрис, КН — высота треугольника АКВ, MN — высота параллелограмма, проходящая через точку К.
Рассмотрим треугольники AHK и AKN. Они прямоугольные, углы HAK и KAN равны, поскольку АК — биссектриса, сторона AK — общая, следовательно, треугольники равны. Тогда KN=KH=4. Аналогично, равны треугольники BKH и BKM, откуда MK=KH=4.
Найдём площадь параллелограмма как произведение основания на высоту.
S=AD*MN=AD*(MK+KN)=7*(4+4)=7*8=56
ЧТД
ответ:56см
Объяснение: S=a*h/2.
1)
S треуг.=32*7/2=112 см².
16*h/2=112.
h=2*112/16=14 см. высота проведенна на сторону ВС.
2)
S ромба=d₁*d₂/2. диагонали ромба х см и 6х см.
х*6х/2=75.
6х²=150.
х²=25.
х=5 см. одна диагональ . Вторая диагональ 5*6=30 см.
3)
S трапеции=(а+в)/2)*h.
((а+19)/2))*8=104.
а+19=26 . после сокращения.
а=26-19=7см верхнее основание.
4)
Опустим высоту из тупого угла в 150° на нижнее основание.
Угол в этом Δ равен 150-90=60°(верхний угол)
Нижний угол 180-90-60=30°.
Катет, лежащий против угла в 30 град , равен половине гипотенузы
h =10/2=5 см.
S трап.=((7+13)/2))*5=10*5=50см²