21. Дано: прямые MN, и AB.
Доказать, что MN || AB.
AC == CB, что и означает, что <А == <B = 65^o.
Чтобы найти <M, составим формулу: 65+65+115+x = 360^o(так как сумма углов трапеции равна 360 градусам).
130+115+x = 360^o
245+x = 360^o
x = 360-245 => x = 115^o.
Тоесть: <M == <N = 115^o, что и означает, что AM у NB равны друг другу, что и означает, что трапеция равносторонняя.
<CMN = 180-115 => <CMN = 65^o, а это 2-ой признак параллельности прямых, так как соответствующие углы равны друг другу.
Вот и доказали.
26. Дано: ST, MQ
Доказать: ST || MQ
<M = 90^o
MT == TQ == PT => <TMQ = 90/2 = 45^o
MT == TQ => <TMQ == <TQM = 45^o
180-(45+45) = 90^o => <C = 90^o
<C = 90^o => 360-(<C+<M+<Q) => 135-<T = 45^o => <PTS = 45^o.
<PTS и <TMQ — это поперечные углы, и так как они равны друг другу, то по 1-ому признаку параллельных углов, ST || MQ.
22.
Дано: MK, NP
Доказать: MK || NP
MK == KN => <M == <KNM = 60^o => <K = 180-(60+60) = 60^o (что и означает, что треугольник MKN - равносторонний).
Доказать не могу, но <PNE == <KNM => <PNK = 180-(60+60) = 60^o.
И так как поперечные углы, тоесть <PNK и <K — равны друг другу, то по 1-ому признаку параллельности прямых, стороны MK и NP параллельны — MK || NP.
Все грани куба – квадраты и противоположные грани образуют параллельные плоскости. Искомая плоскость α пересекает ABC по прямой PM, а A1B1C1 – по прямой NK, причем . Далее, продолжение отрезков PM и BC пересекаются в точке E и точка E принадлежит плоскости BCC1. Так как точка N также принадлежит этой плоскости, соединяем эти точки прямой. Получаем точку F на отрезке BB1. Затем, продолжаем отрезки DC и PM, которые пересекаются в точке U. Соединяем точку U с точкой K, получаем точку Z на отрезке DD1. В результате, получаем сечение PMFNKZ в виде правильного шестиугольника.
б) Угол между плоскостью A1BD и α (правильный шестиугольник) – это линейный угол двугранного угла. Учитывая, что диагонали BD и AC перпендикулярны, имеем: , следовательно, по теореме о трех перпендикулярах. И искомый угол – это угол A1O1A.
Пусть ребро куба равно 1, тогда и
и
Его стороны - векторы AB, BC, CD и DA. (векторы будем записывать курсивом)
Найдем координаты этих векторов.
Напомню, как находят координаты вектора:
Если у нас есть точки A(x₁; y₁) и B(x₂; y₂), то координаты вектора находят следующим образом: AB = (x₂ - x₁; y₂ - y₁). (1).
В нашем случае: A(-3; -3); B(-4; 4), значит, согласно формуле (1), координаты вектора AB = (-4 - (-3); 4 - (-3)) = (-1; 7).
Для остальных векторов я вычисления так подробно записывать не буду, запишу лишь результат. Если вы захотите проверить, верны ли мои вычисления, вы можете проверить это с формулы (1), как видите, это несложно.
BC = (7; 1);
CD = (1; -7);
DA = (-7; -1).
Напомню признак коллинеарности двух векторов:
Если AB = (x₁; y₁), CD = (x₂; y₂) и при этом выполняется равенство (x₁/x₂) = (y₁/y₂), то AB || CD (AB коллинеарен CD).
Исследуем на коллинеарность наши векторы AB = (-1; 7) и CD = (1; -7):
(-1/1) = (7/-7);
-1 = -1.
Равенство выполняется, значит, AB || CD.
Аналогично исследуем на коллинеарность векторы BC и DA.
Теперь найдем длины этих векторов.
Если AB = (x, y), то его длину можно найти так: |AB| = sqrt(x² + y²).
|AB| = sqrt((-1)² + 7²) = √50;
|BC| = sqrt(7² + 1²) = √50;
|CD| = √50;
|DA| = √50.
Выходит, что в нашем четырехугольнике стороны попарно равны и параллельны, более того - все стороны равны. Отсюда следует, что наш четырехугольник ни что иное, как ромб.
Осталось лишь доказать, что углы, образуемые векторами, прямые. Можно сделать это по-разному, можно найти скалярное произведение векторов, образующих углы, можно воспользоваться методом для извращенцев - найти длину вектора AC и убедиться с теоремы Пифагора, что ΔABC - прямоугольный.
Рассмотрю оба
1) Напомню, как находят скалярное произведение: AB = (x₁; y₁), CD = (x₂; y₂);
(AB, CD) = x₁x₂ + y₁y₂. (2)
Найдем скалярное произведение наших векторов AB и BC с формулы (2):
(AB, BC) = (-1)*7 + 7*1 = 0 - это говорит о том, что векторы перпендикулярны, т.к скалярное произведение можно записать так: (AB, BC) = |AB| * |BC| * cos(AB^BC). Если скалярное произведение равно нулю, то это значит, что либо одна из длин векторов равна нулю, либо косинус угла между векторами равен нулю. В нашем случае длины векторов не равны нулю ⇒ cos (AB^BC) = 0 ⇒ (AB^BC) = 90°.
Для остальных пар векторов делаете аналогично.
2) Найдем длину вектора AC - |AC| = √100.
Проверим, является ли ΔABC прямоугольным с теоремы Пифагора:
(√100)² = (√50)² + (√50)²;
100 = 50 + 50 ⇒ ΔABC - прямоугольный, прямой угол лежит против большей стороны.
Для остальных углов можно это проверить аналогично.
В итоге получается, что наш четырехугольник не только прямоугольник, но и квадрат.
Фух, всё.