радиус окружности описанной возле правильного треугольника находится по формуле : R=корень из 3 делить на три и умноженный на сторону треугольника
R=корень из 3 деленный на три умножаем на 4 корня из 6
R=корень из 288 деленного на 3
R=12 корней из 2 и все это делить на 3
R=4 корня из 2
далее находим сторону квадрата вписанного в эту же окружности
радиус окружности треугольника равен радиусу окружности квадрата
радиус квадрата равен R=корень из 2 деленный на 2 и все это умножить на сторону квадрата (t)
выражаем t из этой формулы получаем
t= R делить на корень из 2 деленный на 2
t=4корня из 2 делить на корень из 2 деленный на 2
t=8 см
ответ: 8 см.
. Боковая грань пирамиды - равнобедренный треугольник с основанием 5см и углом при вершине 60. Исходя из того, что треугольник с углом 60 и равнобедренный, делаем вывод, что он равносторонний. Значит, его боковая сторона, которая является боковым ребром пирамиды, тоже 5см.
2. Катет BC^2=29^2 - 21^2 = 8*50 =400. BC=20
Находим площадь DAB S=20*29/2=290.
Площадь DAC S=20*21/2=210
DC^2=20^2+21^2=841=29^2 DC=29
По теореме про три перпендикуляра, тк CB перпендикулярно AC, то CB перпендикулярно CD.
Треугольник DCB прямоугольный, S=20*20/2=200
площадь боковой поверхности пирамиды = 290 + 210 + 200 =700