64 см
Объяснение:
Нам известно что угол В равен 60°. В таком случае угол А будет равен 30°. Катет против 30 равен половине гипотенузы. Что бы найти этот катет мы будем работать в малом прямоугольном ореугольнике СВD. Угол В остаётся равен 60°,значит угол ВСD будет равен 30°. В нем известная нам сторона DB будет катетом против 30. А сторона ВС будет гипотенузой. Находим ее,умножив 16 на 2.
Возвращаемся к большому треугольнику. Теперь нам известно,чему равен катет против 30°. Так как он равен 32 см,при умножении на 2 мы получаем целую сторону АВ,равную 64 см
1 номер - треугольники равны по 2 углам и стороне между ними, АЕ = 3; ВЕ = 5; АВ = 4
2 номер - потому что ∠ВАС = ∠DАС
Объяснение:
1 номер: А = D по условию, AE = ED по условию, ∠AEB = ∠CED как вертикальные углы. Значит, треугольники равны по двум углам и стороне между ними. В равных треугольниках все соответствующие элементы равны. Т.е. AE = ED = 3; ВЕ = ЕС = 5; АВ = СD = 4
2 номер: треугольники АВС = АDС т.к. АВ = АD по условию, ВС = СD по условию, АС - общая. Значит, равны по трем сторонам. В равных треугольниках все соответствующие элементы равны. Т.е. ∠ВАС = ∠DАС. Бис-са делит угол пополам, ∠ А = ∠ВАС +∠ DАС, ∠ВАС = ∠DАС, АС бис-са