ответ: 2/5
Объяснение: первым делом вычислим сколько кубиков получится. Очевидно, кол-во кубиков будет совпадать с объемом параллелепипеда, т.е 3×4×5=60.
Можно понять, что два окрашенных граней будет только у кубиков, которые были изначально у стыка двух граней параллелепипеда, исключая кубики на вершинах(у них будут 3 окрашенных граней).
Сделаем развертку и на каждой грани отметим все крайние квадратики кроме тех что у вершин, таких квадратиков у 3×4 грани будет 6, у 3×5 8 и у 4×5 10, домножив на 2 получаем что всего таких квадратиков на параллелепипеде 48 штук, именно они дают кубики с двумя окрашенными гранями, но так как 2 квадратика принадлежат одному кубику поделим 48 на 2 и получаем 24.
Т.е шанс 24/60=2/5.
Биссектриса параллелограмма отсекает от него равнобедренный треугольник. ( Накрестлежащие углы при параллельных QK и МN и секущей МК равны, и угол QMK=углу КМN, т.к. МК - биссектриса).
Тогда MQ=AB=6, и
QH=MN=QK+KH=6+4=10.
∆ QOK~ ∆ MON по трем равным углам - углы при О вертикальные, два других равны, как накрестлежащие.
k=QK:MN=6/10=3/5
Проведем КЕ || QM. Четырехугольник MQKT- ромб ( противоположные стороны параллельны и равны)
Площадь MQKE равна произведению высоты QP на сторону, к которой проведена. QP=3 по условию.
S (MQKE)=3•6=18 (ед. площади)
Диагональ МК делит ромб пополам.
S ∆ MQK=18:2=9
Отношение сходственных сторон ∆ QOK и ∆ MON равно k=3/5
KO:OM=3/5
MO=3+5=8 частей.
В треугольниках MQO и QOK высоты, проведенные из Q к МК, равны, поэтому их площади относятся как длины их оснований (свойство).
Тогда S∆ QOK= S ∆MQK:8•3=9:8•3=27/8 ( ед. площади) или 3³/₈
Четырехугольник АВ1А1В - трапеция, В1В и А1А - ее диагонали.
Треугольники, образованные отрезками иагоналей и боковыми сторонами трапеции, имеют одинаковую площадь.( свойство трапеции).
Доказательство.
Рассмотрим ∆ АВ1А1 и ∆ ВВ1А1. У этих треугольников общее основание и высоты, равные высоте трапеции.
Формула площади треугольника S=a•h/2, где а - сторона треугольника, h- высота, проведенная к ней.
Если основания и высоты треугольников равны, их площади равны.
∆ АВ1А1= ∆ АВ1О+∆ В1ОА1
∆ ВВ1А1= ∆ ВОА1+∆ В1ОА1
Два треугольника с равной площадью состоят из частей, одна из которых - одна и та же. Следовательно, площади вторых частей этих треугольников равны.
S ∆ АОВ1=S∆ ВОА1, ч.т.д.
---------
Вариант – более короткое решение.
Каждая медиана треугольника делят его на два равновеликих ( равные высоты и основания).
S∆ ВCВ1=S ∆ АСА1=S ∆ АВС:2
Сумма площадей ∆ АОВ1+четырехугольника В1СА1О равна сумме площадей ∆ ВОА1+четырехугольника В1СА1О, равна половине площади ∆ АВС, из чего следует равенство площадей треугольников АВ1О и А1ВО