Начертим треугольник ABC . Угол DBC=40 градусам, т.к Биссектриса делит угол B пополам. 1)Угол BDC=60 градусов, т.к. В треугольнике ABD угол D= 120 градусов смежный, а угол BDC соответственно равно 180 градусов - 120 градусов= 60 градусов. Сумма треугольников =180 градусов. Угол C=180-(60+40)=80 градусов. 2)Следовательно BD будет больше BC, т.к напротив большего угла лежит большая сторона, и наоборот. Напротив стороны BD лежит угол C=80 градусов. Напротив стороны BC лежит угол D=60 градусов. 80 градусов больше 60 градусов. Отсюда следует, что BD больше BC.
В треугольнике ABC угол C равен 90°, AB = АС•√2, BC = 6. Найдите высоту CН. По т.Пифагора АВ²=АС²+ВС² АВ²-АС²=ВС² Примем АС=а. Тогда гипотенуза АВ=а√2. 2а²-а²=36⇒ а=√36=6 a√2=6√2 АС=ВС - треугольник равнобедренный. В равнобедренном треугольнике высота, проведенная к основанию, совпадает с медианой. В равнобедренном прямоугольном треугольнике высота из прямого угла=0,5 гипотенузы ( по свойству медианы из прямого угла). СН =(6√2):2=3√2
Иногда эту высоту требуется записать в ответе как √2CH. Тогда, так как √2•3•√2=6, в ответе пишется 6.
Для доказательства равенства отрезков следует доказать равенство треугольников, образованных указанными отрезками, высотой равнобедренного треугольника,которая как раз соединяет вершину равнобедренного треугольника и середину основания, и сторонами равносторонних треугольников, построенных на сторонах равнобедренного треугольника. Доказательство проводится через признак равенства треугольников по двум сторонам и углу между ними. Стороны равны по условию и построению, а углы равны по условию и по тому, что высота в равнобедренном треугольнике является также и биссектрисой.