Так как биссектриса угла А делит угол ВАС пополам, то угол ВАД=САД = 40/2=20 градусов(гр.) скмма всех углов треугольника равна 180гр. угол В = 180-(20+120)=40 угол С=180-(40+40)=100гр
1) Объем шара V1=4pir^2; 4pir^2=36pi; r^2-9; r=3. 2) Осевым сечением конуса будет равносторонний тр-к, а шара - круг, вписанный в этот тр-к. Центр вписанного в тр-к круга лежит в точке пересечения биссектрис. Но в равностороннем тр-ке это и медианы и высоты. Точка пересечения медиан делит медиану в отношении 2:1, считая от вершины. Значит высота тр-ка равна 3*3=9 Это и высота конуса h=9. 3) R - радиус основания конуса. По определению тангенса tg60o=h/R; R=h/tg60 = 9/V3 = 3V3. 4) Объем конуса V= (1/3)piR^2*h = (1/3)pi*(3V3)^2 * 9 = 1/3pi * 27 * 9=81pi кв. ед. ответ: 81pi кв. ед.
Если рассмотреть сечение, то получится прямоугольник со сторонами 2х и h , вписан в равнобедренный треугольник Составлю площадь поверхности цилиндра с радиусом х и высотой h (выраженной через х) как функцию от х и через производную найду ее максимум. найденное х подставлю в обем цилиндра... 1) выражу h через х из ΔАВН tgA=h/(6-x); h=(6-x)*tgA=(6-x)*(15/6)=5(6-x)/2=15-2.5x S(пов)=2pix^2+2pix*h=2pi*x^2+2pix(15-2.5x)= =2pix^2+30pix-5pix^2=30pix-3pix^2 приравниваю производную по х к 0 30pi=6pix x=5 h=5/2=2.5 V=pix^2*h=pi*5^2*2.5=62.5pi
скмма всех углов треугольника равна 180гр.
угол В = 180-(20+120)=40
угол С=180-(40+40)=100гр