Одна сторона x, другая x-3 Площадь равна x*(x-3)=88 x^2-3x=88 x^2-3x-88=0 D=9+4*88=361=19^2 x1=3+19/2=11 x2=3-19/2=-8 - не удовлетворяет условию задачи
Папирус ахмеса — древнеегипетское учебное руководство по арифметике и периода среднего царства, переписанное около 1650 до н. э. писцом по имени ахмес на свиток папируса длиной 5,25 м. и шириной 33 см. папирус ахмеса был обнаружен в 1858 шотландским египтологом генри риндом и часто называется папирусом райнда по имени его первого владельца. в 1870 папирус был расшифрован, переведён и издан. ныне большая часть рукописи находится в британском музеев лондоне, а вторая часть — в нью - йорке. этот документ остается основным источником информации по древнего египта. он содержит чертежи треугольников с указаниями углов и формулами нахождения площадей. во вступительной части папируса райнда объясняется, что он посвящён «совершенному и основательному исследованию всех вещей, пониманию их сущности, познанию их тайн». все , в тексте, имеют в той или другой степени практический характер и могли быть применены в строительстве, размежевании земельных наделов и других сферах жизни и производства. по преимуществу это на нахождение площадей треугольника, четырёхугольников и круга, разнообразные действия с целыми числами, пропорциональное деление, нахождение отношений.
1-a - основание столба, b - верхушка столба (= "фонарь"), c - основание дерева, d - верхушка дерева, e - конец тени. cd=1м, ac = 8ш; ce=4ш⇒ae=12ш. из подобия треугольников abe и cde⇒ ab/cd=ae/ce; ab= 3м 2-треугольник авс - прямоугольный. докажем это с применением теоремы пифагора: 41²=40²+9² 1681=1600+81 значит, ас - гипотенуза. в прямоугольном треугольнике центр окружности находится посередине гипотенузы, следовательно, радиус окружности равен 41: 2=20,5 см. ответ: 20,5 см. 3-1)вс^2=4^2+3^2=25 bc=5 2)bc^2=ac*hb 5^2=x*3 25=3x x=25/3 3)по теореме пифагора ас^2+5^2=(25/3)^2 ac^2=625-225/9 ac^2=400/9 ac=20/3 4-опустим из вершины равнобедренного треугольника высоту, которая по известной теореме является медианой и биссектрисой. тогда из получившихся прямоугольных треугольников найдем, что sin(α/2) = (x/2)/b = x/(2b), где x - это длина искомого основания. теперь выразим икс. x = 2b*sin(α/2). 5-опускаем перпендикуляр bd на сторону ac. проекция ab на ac - это ad= ab cos a; проекция bc на ac - это cd= bc cos c. из теоремы синусов ab/sinc=bc/sina=ac/sin(a+c) ab=ac sinc/sin(a+c) bc=ac sina/sin (a+c) следовательно ad=ac sinc cosa/sin(a+c) cd=ac sina cosc/sin(a+c)
x^2-3x=88
x^2-3x-88=0
D=b^2-4ac=9-4*1*(-88)=361
x1=(3-19)\2=-8 не подходит
x2=(3+19)\2=11 подходит
значит одна сторона 11 а другая 9