3. 1. Неверно. В равнобедренном треугольнике могут совпадать высота и медиана только из одной вершины. Из всех вершин они совпадают только в равностороннем треугольнике.
3.2. Верно. Если биссектриса делит противоположную сторону на равные отрезки, то она еще и медиана. Такой треугольник равнобедренный.
3.3. Верно. В равностороннем треугольнике высоты и биссектрисы, проведенные из каждой вершины, совпадают.
4. Биссектрисы треугольника пересекаются в одной точке. Следовательно, FО - биссектриса.
___
5. Если АF=FC, то BF- еще и медиана. Высота и медиана совпадают в равнобедренном треугольнике.⇒ ВС=ВА=7 см.
6. EF = FK, BF – высота⇒
Треугольник КВЕ равнобедренный. Решения нет, по одной только высоте найти основание треугольника нельзя.
7. Основание равно разности между периметром и суммой боковых сторон. 12-(5+5)=2 см.
Дано:
P = 80 см
a - c = 4 см
a || b
c || d
a - ?
b - ?
c - ?
d - ?
Решение
Т.к периметр это сумма длин всех сторон, то P = a + b + c + d, но наша фигура - параллелограмм, т.е у неё противоположные (параллельные) стороны равны, т.е a = b, c = d, а отсюда следует что P = a + a + c + c = 2(a + c), но с другой стороны a - c = 4, составим и решим систему уравнений:
80 = 2(a+c)
a-c=4
a = 4+c
80 = 2(4+c+c) = 8 + 4c
72 = 4c
c = 18 см.
a = 22 см.
a = b = 22 см., c = d = 18 см.
ответ: a = b = 22 см., c = d = 18см.
------------------
В правильной треугольной пирамиде основанием служит правильный треугольник.
Грани пирамиды - равнобедренные треугольники, т.к. боковые ребра равны.
По условию плоский угол при вершине равен 60°.
Следовательно, углы при основании боковых граней также равны 60°,
и эти грани - равносторонние треугольники.
Стороны основания равны боковым ребрам и равны 4 см
Объем пирамиды равен одной трети произведения площади её основания на высоту.
Так как все ребра пирамиды равны, их проекции на основание также равны, и поэтому основание высоты КО пирамиды находится в точке О пересечения высот основания АВС пирамиды.
Высоту КО найдем из прямоугольного треугольника АКО, где катеты КО и АО и гипотенуза АК.
Медианы треугольника точкой пересечения делятся в отношении 2:1, считая от вершины.
АО -2/3 высоты АН ( которая в равностороннем треугольнике является и медианой)
АН=АВ*sin(60°)=2√3 см
АО=2*(2√3):3=(4√3):3 см
КО=√(АК²-АО²)=√(16-48/9)=√(96/9)=(4√6):3 см
V=Sh:3
S= (a²√3):4=16√3):4=4√3 см²
V=(4√3)*(4√6):3):3=(16√2):3 см³