В трапеции верхнее основание = 2см,
нижнее основание = 14 см.
Проведи две высоты с концов верхнего основания к нижнему.
По бокам трапеции получишь 2 равных прямоугольных треугольника
14 - 2 = 12 (см) - это 2 нижних катета обоих треугольников
12 : 2 = 6 (см) - это один нижний катет одного треугольника
Боковая сторона трапеции - это гипотенуза треугольника = 10 см
Нижний катет треугольника = 6см
Проведённая высота - это вертикальный катет треугольника
По теореме Пифагора определим высоту
Высота = √(10^2 - 6^2) = √(100 - 36) = √64 = 8(см)
ответ: 8 см - высота трапеции.
ответ:Диагонали равнобедренную трапецию делят на 4 треугольника,два треугольника,у которых одной стороной являются бОльшее или меньшее основание,равнобедренные,а два других,у которых в наличии боковые стороны трапеции,равны между собой
<ВОС=<АОD=110 градусов,как вертикальные
<ОВС=<ВСО=(180-110):2=35 градусов,как углы при основании равнобедренного треугольника ВСО
Треугольник АОD тоже равнобедренный
<ОАD=<ODA=(180-110):2=35 градусов
<АОВ=<СОD=(360-110•2):2=(360-220):2=140:2=70 градусов
В условии указано,что
ВС=АВ=СD
Рассмотрим треугольник АВС,он равнобедренный,т к
АВ=ВС по условию задачи
Следовательно,
<ВАС=<ВСА=35 градусов
Тогда,
<В=(180-35•2)=110 градусов
<С=<В=110 градусов,как углы при основании равнобедренной трапеции
<А=180-110=70 градусов,т к сумма углов прилежащих к боковой стороне равна 180 градусов
<D=<A=70 градусов,т к углы при основании равнобедренной трапеции равны между собой
Как было сказано выше-
Треугольник АВО равен треугольнику СOD по определению,значит
<АВО=<DCO=180-(70+35)=180-105=75 градусов
Объяснение:
2) Так как треугольник ВОС подобен треугольнику АOD (по 2 углам) и треугольник ВОА подобен треугольнику СОD, то
3) Площадь трапеции равна сумме площадей всех тр-ков. Sтр=2*20+16+25=81 ед^2
ответ: 81 ед^2