ответ: 1.1 AD=1,5; 1.2 CB=3; 1.3 DE=2;
2.1 BE= EC; 2.2 AD=DB;
3.1 Нет; 3.2 Да;
4.1 DB; 4.2 BE;
5.1 AD, DB; 5.2 AC;
6.1 CA; 6.2 CE;
7.1 DE; 7.2 BE;
Объяснение: 1.1 так как ДЕ проведен из середин боковых сторон следовательно стороны AB и BC делятся пополам на отрезки по 1,5 см =3/2
1.2 он равен 3 так как в условии это уже указано(AB=BC=3)
1.3 ДЕ = 2 так как он средняя линия треугольника
2.1 Векторы равны так как направлены в одно сторону и имеют одинаковую длину( делятся пополам точкой Е)
2.2 Векторы равны так как направлены в одно сторону и имеют одинаковую длину(делятся пополам точкой D)
3.1 Они равны, но не сонаправлены(направлены в одну сторону)
3.2 Они равны и сонаправлены(направлены в одну сторону)
4. Противоположные векторы - имеют одинаковую длину и противоположное направление.
5.1 Они направлены в одну сторону так как угол между основанием о боковой стороной одинаковый
5.2 Так как ДЕ средняя линия то она параллельная основанию АЦ
6. Противоположно направленный вектор может быть любой длины главное чтобы в противоположную сторону.
7. Коллинеарные вектора - ненулевые вектора(нулевые это точка), которые лежат на одной прямой или они параллельны, вне зависимости от направления и длины.
Возведём неравенство в квадрат:
a^6 + b^6 + 2a^3 b^3 >= c^6
Так как (x + y)^3 = x^3 + y^3 + 3xy(x + y), то
(a^2 + b^2)^3 + 2a^3 b^3 - 3a^2 b^2(a^2 + b^2) >= c^6
Теорема Пифагора: a^2 + b^2 = c^2
с^6 + 2a^3 b^3 - 3a^2 b^2 c^2 >= c^6
2ab - 3(a^2 + b^2) >= 0
3a^2 - 2ab + 3b^2 <=0
(a^2 - 2ab + b^2) + 2a^2 + 2b^2 <=0
(a - b)^2 + 2a^2 + 2b^2 <=0
Из последнего неравенство следует, что a = b = 0, чего быть не может. Противоречие.