Вкруге из одной точки окружности проведены две хорды под углом 90 градусов друг к другу. найдите площадь части круга, заключенной между ними, если длина каждой хорды равна 4см.
Так как хорды образуют 90 градусов-это вписанный угол С,центральный угол который опирается на эту же дугу ,будет равен 90•2=180.Соединив другие концы хорд А и В ,получим прямоугольный треугольник АВС,гипотенузой которого является диаметр АВ.Искомая площадь состоит из суммы площадей двух фигур:прямоугольного треугольника АВС и полуокружности. S(ABC)=1/2•AC•BC S(ABC)=1/2•4•4=8 АВ-диаметр АВ^2=АС^2+ВС^2 АВ^2=4^2+4^2 АВ^2=16+16=32 АВ=V32=4V2 R=4V2/2=2V2 -радиус Sполуокружности=(ПR^2)/2=(П•(2V2)^2)/2=4П S=(8+4П) площадь искомой части Приближённое значение S=8+4•3,14=8+12,56=20,56
1. Свойство касательных к окружности, проведенной из одной точки: отрезки касательных равны. х-радиус вписанной окружности (см. рисунок в приложении) Учитывая, что периметр равен 54, составляем уравнение: х+х+х+х+3+3+12+12=54 4х+30=54 4х=24 х=6
2. Из условия: ∠С=х ∠А=4х ∠В=4х-58°
Так как четырехугольник вписан в окружность, то ∠А+∠С=180° ∠В+∠Д=180°
4х+х=180° 5х=180° х=36°
Тогда ∠С=36° ∠А=4х=4·36°=144° ∠В=4х-58°=144°-58°=86°
S(ABC)=1/2•AC•BC
S(ABC)=1/2•4•4=8
АВ-диаметр
АВ^2=АС^2+ВС^2
АВ^2=4^2+4^2
АВ^2=16+16=32
АВ=V32=4V2
R=4V2/2=2V2 -радиус
Sполуокружности=(ПR^2)/2=(П•(2V2)^2)/2=4П
S=(8+4П) площадь искомой части
Приближённое значение S=8+4•3,14=8+12,56=20,56