ответ:S=12P⋅h,S=12⋅9⋅7√2=97√4
Объяснение:
найдем сторону основания правильной пирамиды по формуле a = R√3, a = √ · √ = 3
найдем периметр основания Р = 3·а, Р = 9
радиус вписанной в правильный треугольник окружности в 2 раза меньше радиуса описанной около этого треугольника окружности, т.е. R = 2r, тогда OP=3√2
из прямоугольного треугольника МОР по теореме Пифагора находим апофему МР: MP=MO2+OP2−−−−−−−−−−√,
МР=1+|3√2|2−−−−−−−−√=1+34−−−−−√=7√2
вычислим площадь боковой поверхности правильной пирамиды: S=12P⋅h,S=12⋅9⋅7√2=97√4
Объяснение:
Задание А
ΔАВС, ВD-биссектриса, ∠А=50° ,∠В=60°.
1)По т. о сумме углов треугольника ∠С=180°-50°-60°=70°.
Т.к. ВD-биссектриса, то ∠DВС=60°:2=30°
ΔВDС ,∠ВDС=180°-30°-70°=80°
2)В треугольнике ΔВDС против большего угла лежит большая сторона :70°>30°,∠С>∠ВDС и значит ВD>DС.
Задание В
1)ΔNMK , по т.о сумме углов треугольника ∠N=180°-75°-35°=70°.
2)NО-биссектриса, значит ∠ОNК=70°:2=35°. В ΔОNК два угла по 35°, значит он равнобедренный и ОК=NО.
3)ΔОМN , срвним углы 75°>30°, т.е ∠М>∠МNО и значит NО>МО. Но NО=ОК, значит ОК>МО.
Задание С
1)ΔАВС, ∠А=90°-70°=20° по св. острых углов прямоугольного треугольника.
2)DC=BC, значит ΔDCВ-равнобедренный и прямоугольный и ∠СВD=∠DВC=(180°-90°):2=45°.
Значит ∠DВА=70°-45°=25°
3)∠АDВ=180°-45°=135° по т. о смежных углах
4) В ΔВDC-прямоугольном ∠С=90° самый большой, значит против него лежит большая сторона DВ>DC
узнаем площадь малой окружности: 3,14*3²=28,26м²
площадь кольца = площадь большой окружности - площадь малой
45*3,14 = х - 28,26
141,30 = х - 28,26
х= 141,30+28,26 = 169,56 м² - это площадь большой окружности
далее
169,56 = пr²
169,56 = 3,14*r²
r² = 169.56/3.14 = 54
r = √54 = 7,3 см
ответ: 7,3 см