При пересечении прямых образовались пары равных углов: х и у (они равны как вертикальные углы). Зная, что сумма трех углов равна 240, составим уравнение: х + х + у = 240, 2х + у = 240 Зная, что развернутый угол равен 180, можем записать еще одно уравнение: х + у = 180 Решаем систему уравнений: Выразим из второго уравнения х: х = 180 - у Подставив х в первое уравнение, получаем: 2(180 - у) + у = 240 360 - 2у + у = 240 360 - у = 240 у = 360 - 240 у = 120 Подставив значение у в уравнение, находим х: х + 120 = 180 х = 60
Так как призма прямая и в основании квадрат, все углы между ребрами прямые. Между пересекающимися боковым ребром и диагональю основания, а так же пересекающимися стороной основания и диагональю боковой грани уголы прямые (если прямая перпендикулярна плоскости, то она перпендикулярна любой прямой в этой плоскости, проходящей через точку пересечения). По теореме Пифагора находим: (17^2-15^2)=64 - квадрат диагонали основания. 64/2 = 32 - квадрат стороны основания. 32 + 15^2 = 32+225 =257 - квадрат диагонали боковой грани \|257 (см) - диагональ боковой грани
Обозначим параллелограмм ABCD ,биссектриса проведена из угла В к стороне AD в точке M .Угол А =180°-150°=30°(сумма соседних углов параллелограмма 180°) .∠ABM равен углу BMC =150°÷2=75°(так как BM - биссектриса) .∠BMA треугольника ABM равен 180°-75°-30°=75°,значит треугольник ABM -равнобедренный с основанием BM ,поэтому AB=AM=16 см .AD=AM+MD=16+5= 21 см .Площадь параллелограмма ABCD найдём по формуле S=a×b×sinα(где а и b стороны параллелограмма ,а α-угол между ними).S=16×21×sin30°=336×0,5=168 см² .
Зная, что сумма трех углов равна 240, составим уравнение:
х + х + у = 240, 2х + у = 240
Зная, что развернутый угол равен 180, можем записать еще одно уравнение:
х + у = 180
Решаем систему уравнений:
Выразим из второго уравнения х:
х = 180 - у
Подставив х в первое уравнение, получаем:
2(180 - у) + у = 240
360 - 2у + у = 240
360 - у = 240
у = 360 - 240
у = 120
Подставив значение у в уравнение, находим х:
х + 120 = 180
х = 60