Диагональ прямоугольника делит его на два равных прямоугольных трегольника. Вычислим площадь одного из них. По условию, его гипотенуза равна 3, а один из острых углов равен 30 градусов. Найдём катеты треугольника. Известно, что катет, лежащий против угла в 30 градусов, равен половине гипотенузы и равен 3/2. Второй катет найдём по теореме Пифагора - (3/2)²+x²=3², откуда x²=27/4, x=3√3/2. Если катеты треугольника равны 3/2 и 3√3/2, то его площадь равна 1/2*(3/2)*(3√3/2)=9√3/8. Площадь прямоугольника в 2 раза больше и равна 9√3/4.
Нарисуй чертеж ВМ=МС=а AN=ND=b (это обозничили мы так) треугольники APN и MPB подобны с коэффициентом b/a,и высоты тоже
треуг. NQD и CQM подобны с тем же коэфф b/a и высоты тоже. но если у треуг. APN и NQD AN=ND, то и высоты равны. Т.е. точки P и Q находятся на одинаковом расстоянии от AD что и требовалось доказать.
если по поводу высот , что они равны , непонятка, то это следует из того, что отношения высот малого и большого треуг. равно одному и тому же коэффициенту, а сумма этих высот постоянна (высота трапеции)
Треугольная пирамида, все боковые ребра равны, => высота пирамиды проектируется в центр описанной около треугольника (основания пирамиды) окружности. радиус описанной около произвольного треугольника окружности вычисляется по формуле: AC=1, BC=2, <C=60°. AB=? по теореме косинусов: AB²=AC²+BC²-2*AC*Bc*cos<C AB²=1²+2²-2*1*2*cos60° AB²=3, AB=√3
прямоугольный треугольник: гипотенуза с=√13 - боковое ребро пирамиды катет а=√3 радиус описанной около треугольника окружности катет Н -высота пирамиды, найти по теореме Пифагора: c²=a²+H², H²=(√13)²-(√3)². H=√10