Ma — перпендикуляр до площини паралелограма abcd, o — середина bd і mo ⊥ bd. 1) визначте вид паралелограма abcd. 2) знайдіть відстань від точки m до площини паралелограма, якщо ∠adc = 60°, ad = 24 см, ma = 13 см.
Около треугольника можно описать окружность, притом только одну. Центр описанной окружности треугольника лежит в точке пересечения серединных перпендикуляров к его сторонам. В правильном треугольнике высота является также медианой и биссектрисой. Центр описанной окружности правильного трегольника лежит в точке пересечения высот/медиан/биссектрис. Высоты/медианы/биссектрисы правильного треугольника равны a·√3/2 Медианы треугольника пересекаются в одной точке и делятся этой точкой в отношении 2:1, считая от вершины. Расстояние от вершины до точки пересечения медиан правильного треугольника - радиус описанной окружности (R). R= h·2/3 R= a·√3/2·2/3 = a·√3/3
Площадь круга (S) равна пR^2. S= п(a·√3/3)^2 <=> S= (п·a^2)/3 <=> a= √(3·S/п)
r = AL - радиус основания;
h = KL - высота
Рисунок во вложения.
Дано:
BD=12 (см)
Угол Д =30градусов
---------------------------------
Найти: S(бок)-?,S(пол)-?
Решение:
Диаметр основания: d=BD*cos30=12*√3/2=6√3 (см)
2. Определяем радиус основания
радиус основания равен половине диаметру основанию
AL=d/2=6√3/2=3√3 (см).
3. Определяем высоту
KL = BD*sin30=12*1/2=6 (см).
4. Определяем площадь боковой поверхности:
S(бок) =2*π*r*h=2*π*3√3*6=36π√3 (см²)
5. И последнее найдём площадь полной поверхности
S(пол)=2*π*r*(r+h)=2π*3√3*(3√3+6)=54π+36π√3 (см²).
6. V=πr²h=π*(3√3)²*6=162π (см³)
ответ: S(бок)=36π√3(см²), S(пол)=56π+36π√3(см)², 162π (см³)