Средняя линия равнобедренного треугольника, параллельная основанию, равна 16 см, а биссектриса, проведенная к основанию, - 30 см. найдите среднюю линию, параллельную боковой стороне треугольника,
1. МК - средняя линия треугольника, она параллельна одной из его сторон и равна половине этой стороны. Значит: АС = 2 х МК = 2 х 16 = 32 см 2. В равнобедренном треугольнике биссектриса, проведенная к основанию, является и медианой, и высотой. Значит: АО = ОС = 16 см 3. Рассмотрим прямоугольный треугольник ОВС. Зная его катеты ОВ и ОС, можно найти его гипотенузу ВС по теореме Пифагора: ВC = √ BO²+ AO² = √30² + 16² = √1156 = 34 см 4. ОК - средняя линия, параллельная АВ, она соединяет середины сторон треугольника и равна половине стороны, параллельной ей. Значит: ОК = АВ / 2 = ВС / 2 = 34 / 2 = 17 см
NM и ВК пересекаются в точке О и делятся пополам ей.Из этого: треуг NMB подобен треуг ABC по 3-м углам.-NMB-равнобедренный и ВО его высота,медиана и биссектр (по св-ву) ВО=ВК т.к. NM средняя линия Δ АВС Получаем NO=1/2NM= 16/2=8 OK=1/2ВК= 30/2=15 Рассмторим Δ NOK прямоугольный, т.к. уже доказано, что BO высота Δ NMB ⇒ <BON = 90° <NOK - смежный и =180°-<BON = 90° По теореме Пифагора находим NK - гипотенузу Δ NOK NK=√(NO²+OK²) = √(8²+15²)=√(64+225)=√289=17 см ответ: 17 см
Основание правильной четырехугольной призмы- квадрат со стороной а, а=24/4=6 см, боковое ребро ⊥ основанию и равно 10, площадь полной поверхности призмы равна Sбок+2Sосн, Sбок = 10*4а= 10*24=240 см², Sосн= а²= 6²=36 см², Sполн=Sбок+2Sосн=240+2*36= 240+72=312 см², основание правильной треугольной призмы- равносторонний Δ со стороной а=24/3=8 см, и тремя равными углами α= 180°/3=60°, Sосн= а²sin60°/2= (8²*√3/2)/2=64√3/4= 16√3 см², боковое ребро ⊥ основанию и равно 10 см, т е Sбок= 3а*h= 3*8*10=240 см², Sполн= Sбок+2Sосн= 240+ 32√3, сравним площади полных поверхностей этих призм: 312=240+72 > 240+32√3, (√3 < 2) , т е у нас полная поверхность четырехугольной призмы больше треугольной
Это равнобедренная трапеция с боковыми сторонами 12, верхним 7 и нижним 9. опустим перпендикуляры из вершин меньшего основания. этими перпендикулярами нижнее основание делится на три отрезка длинами 1, 7, 1. а сама трапеция высотами делится на два одинаковых прямоугольных треугольника и прямоугольник. в прямоугольном треугольнике известны гипотенуза 12 и катет 1. по теореме Пифагора найдем второй катет (он же высота трапеции) квадратный корень из 143. найдем площадь трапеции S=(7+9)/2 × квадратный корень из 143=8корней из 143
АС = 2 х МК = 2 х 16 = 32 см
2. В равнобедренном треугольнике биссектриса, проведенная к основанию, является и медианой, и высотой. Значит:
АО = ОС = 16 см
3. Рассмотрим прямоугольный треугольник ОВС. Зная его катеты ОВ и ОС, можно найти его гипотенузу ВС по теореме Пифагора:
ВC = √ BO²+ AO² = √30² + 16² = √1156 = 34 см
4. ОК - средняя линия, параллельная АВ, она соединяет середины сторон треугольника и равна половине стороны, параллельной ей.
Значит:
ОК = АВ / 2 = ВС / 2 = 34 / 2 = 17 см