Пусть углы треугольника равны x,y,z, тогда внешние углы равны соотвественно 180-x, 180-y, 180-z. Из условия z=30, (180-x)*2=180-y. Зная, что x+y+z=180, получаем, что x+y=150 и y=150-x. Подставляя в уравнение, находим x: (180-x)*2=180-(150-x) 360-2x=30+x 330=3x x=110, тогда y=40. Действительно, внешние углы равны 70 и 140=2*70 градусам.
Таким образом, углы треугольника равны 110, 40 и 30 градусам.
Стона тр-ка равна а=Р/3=24/3=8см. Радиус описанной окружности около правильного тр-ка рассчитывается по формуле: R=(a√3)/3=(8√3)/3см. Пусть сторона пятиугольника равна х. Правильный пятиугольник состоит из пяти равнобедренных тр-ков с основанием х, которые, в свою очередь делятся высотой, опущенной из центра на основание х, на два прямоугольных треугольника. Рассмотрим один такой тр-ник. У него гипотенуза R, один из катетов х/2, а угол, напротив этого катета - центральный, равен: ∠О=360/10=36° sin36=(х/2)/R, x=2Rsin36=(16sin36·√3)/3≈5.43см.
1. Рассмотрим осевое сечение конуса - треугольник АВС, он правильный. У правильного треугольника высота опущенная из точки В на сторону АС будет его медианой и биссектрисой. А если так то угол АВД=углу ДВС. Угол АВД = 30 градусов. 2. Рассмотрим треугольник ВБС. Угол Д равен 90 градусов, потому что ВД высота. Треугольник ВБС прямоугольный. За теоремой косинусов находим сторону треугольника АВС. cos углаДВС=ВД/ВС. ВС=ВД/cos углаДБС. 3. Площадь треугольника равна половине площади прямоугольника. S=(АС*ВД)/2
(180-x)*2=180-(150-x)
360-2x=30+x
330=3x
x=110, тогда y=40. Действительно, внешние углы равны 70 и 140=2*70 градусам.
Таким образом, углы треугольника равны 110, 40 и 30 градусам.