Пусть дан треугольник АВС, и пряммые АВ и АС параллельны плоскости Альфа. Пряммые АВ и АС пересекаются. Через них можно провести плоскость и причем одну. Пусть плоскость которая проходит через пряммые АВ и АС - плоскость Бэта. Тогда она параллельна плоскости Альфа, так как две пересекающиеся пряммые этой плоскости параллельны плоскости Альфа.
Далее. Две точки В и С принадлежат плоскости Бэта (так как принадлежат пряммые АВ и АС), значит и вся пряммая ВС принадлежит плоскости Бэта. Любая пряммая плоскости Бэта паралельна плосоксти Альфа (так плоскосит параллельны), в частности пряммая ВС параллельна плоскости Альфа.
ответ: третья пряммая тоже паралелльна плоскости
1) чтобы через две скрещивающиеся прямые построить две параллельные плоскости, необходимо:
- провести прямую с, пересекающую прямую b и параллельную прямой а
- провести прямую d, пересекающую прямую a и параллельную прямой b
Получится две пересекающиеся прямые, которые параллельны двум другим пересекающимся прямым, а значит эти пересекающиеся прямые лежат в плоскостях параллельных друг другу.
2) Третья сторона тоже параллельна плоскости
3) прямые MN и AD могут:
- пересекаться
- совпадать друг с другом (но при этом другие прямые трапеции не лежат в плоскости ромба)
- скрещиваться
1.Высота прямоугольного треугольника, проведённая из вершины прямого угла, есть среднее пропорциональное для отрезков, на которые делится гипотенуза этой высотой.
2. Катет прямоугольного треугольника есть среднее пропорциональное для гипотенузы и отрезка гипотенузы, заключенного между катетом и высотой, проведенной из вершины прямого угла
Доказательство:
Высота, проведенная из вершины прямого угла прямоугольного треугольника делит его на два подобных треугольника, каждый из которых подобен данному.Это подобие вытекает из равенства углов: <A=<CBH и <C=<ABH (вытекает из того, что сумма острых углов прямоугольного треугольника равна 90°).
Тогда:
1. Из подобия треугольников АВН и ВСН имеем:
АН/ВН=ВН/НС или ВН²=АН*НС, что и требовалось доказать.
2. Из подобия треугольников АВН и АВС имеем:
АН/АВ=АВ/АС или АВ²=АН*АС.
Из подобия треугольников СВН и АВС имеем:
СН/ВС=ВС/АС или ВС²=СН*АС.
Что и требовалось доказать.