Точка B(3,-2,2)
а) параллельна плоскости Oyz.
Уравнение плоскости, параллельной плоскости yOz, имеет вид: Ax + D = 0.
Подставляя в него координаты точки A, получим 3A + D = 0, или D = -3A.
Подставляя это значение в Ax + D = 0, получим
Ax - 3A = 0,
а сокращая на A, будем иметь окончательно
x - 3 = 0.
б) перпендикулярна оси Ox.
Так как плоскость перпендикулярна оси Ox, то она параллельна плоскости yOz, а потому ее уравнение имеет вид
Ax + D = 0.
Подставляя в это уравнение координаты точки A, получим, что D = -3A. Это значение D подставим вAx + D = 0 и, сокращая на A, будем иметь окончательно x - 3 = 0.
Подробнее - на -
Дано: прямоугольный треугольник АВС;
угол С = 90;
СА = 3;
СВ = 4;
СН - высота.
Найти: СН - ?
1) рассмотрим прямоугольный треугольник АВС. Тогда по теореме Пифагора:
АС^2 + СВ^2 = АВ^2;
3^2 + 4^2 = АВ^2;
9 + 16 = АВ^2;
25 = АВ^2;
АВ = 5;
2) В прямоугольном треугольнике каждый катет - это среднее пропорциональное между гипотенузой и проекцией этого катета на гипотенузу. Тогда
ВС = √( АВ * НВ);
4 = √( 5 * НВ) (возведем правую и левую часть в квадрат);
16 = 5 * НВ;
НВ = 16/5;
НВ = 3,2;
3) АС = √( АВ * НА);
3 = √( 5 * НА) (возведем правую и левую часть в квадрат);
9 = 5 * НА;
НА = 9/5;
НА = 1,8;
4) СН = √АН * НВ;
СН = √1,8 * 3,2;
СН = √5,76;
СН = 2,4.
ответ: 2,4.
ВС - катет противолежащий углу А
АС - катет прилежащий углу А
Если известны катет а и гипотенуза с
Второй катет определяется за формулой по теореме Пифарога:
b²=c²-a² ( потом из этого нужно добыть корень )
Угол определяется по формуле синуса:
sin α = a\c
Если известны катеты a и b
Опять же за теоремой Пифрагора:
c²= a²+b²
Угол определяется по формуле тангенсов:
tgα=a/b
Стороны можно найти по формулам:
a=c ·sinα
b= c ·cosα
a= b ·tgα
b= c ·sinβ
a= c ·cosβ
b= a ·tgβ
c=asinα
c=bcosα
b=atgα