Дано: BC║AD; BD⊥AB; ∠BAD=50°; BC=DC.
Найти: ∠ABC, ∠BCD и ∠CDA.
∠BAD+∠ADB+∠DBA = 180° как сумма углов ΔBAD.
∠ADB = 180°-∠DBA-∠BAD = 180°-90°-50° = 40°
∠ADB = ∠DBC как накрест лежащие углы при параллельных прямых BC, AD и секущей DB.
∠DBC = ∠ADB = 40°.
ΔBCD - равнобедренный (по условию BC=DC), поэтому углы при его основании равны (∠DBC=∠BDC).
∠BDC = ∠DBC = 40°.
∠BCD = 180°-∠BDC-∠DBC = 180°-40°-40° = 100° т.к. сумма углов в треугольнике равна 180°.
∠ABC = ∠DBA+∠DBC = 90°+40° = 130°.
∠CDA = ∠ADB+∠BDC = 40°+40° = 80°.
ответ: 130°, 100° и 80°.
проведём биссектрису AH она делит угол A пополам
а точнее угол BAH=90:2=45
угол HAC=45 (но это не важно)
по теореме Пифагора найдём гипотенузу BC
BC^2=4a^2+a^2=5a^2
BC= корень из 5 a
Медиана равна половине гипотенузы прямоугольного треугольника
AH=1/2 Корень из 5 a=1/2 * корень(5) * a