М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Lãkomkã01
Lãkomkã01
26.04.2022 01:14 •  Геометрия

Сумма двух углов равнобедренной трапеции равна 342.найдите меньший угол трапеции.

👇
Ответ:
otepovaaazan
otepovaaazan
26.04.2022

Сумма всех углов четырехугольника равна 360 градусов. В равнобедренной трапеции пары углов, прилежащих к одному основанию, равны сежду собой.

360-342=18

18:2=9.

ответ: 9 градусов. 

4,4(17 оценок)
Открыть все ответы
Ответ:
dan2013215671
dan2013215671
26.04.2022

1.  R - радиус описанной окружности

a-сторона правильного треугольника

стороны правильного треугольника равны 45/3=15см

a/sin(pi/3)=2*R

так же радиус можно найти по формуле R=b/(2*sin(pi/N))

b- сторона правильного многоугольника

N- количсетво углов в многоугольнике (равно количеству сторон)

приравниваем две формулы, выражаем b.

 

 

2. площадь квадрата равна квадрату его стороны, значит сторона квадрата равны корню квадратному из 72

опять используем известную уже формулу радиуса описанной окружности, R=b/(2*sin(pi/N)) и найдём радиус окружности.

площадь круга равна pi*R^{2}  (число пи умноженнное на квадрат радиуса)

 

4. необходимо использовать формулы из задачи 1.

 

5.  площадь вписанного 6_угольника S=(3sqrt{3}*a^{2})/2, отсюда находим сторону а и используем ее в следуещей формуле, откуда мы находим радиус окружности R=а/(2*sin(pi/N))

l=2*pi*R - длина окружности

 

6.  площадь сектора находится по формуле S=frac{pi*R^{2}*alpha}{360}

 

 

4,7(17 оценок)
Ответ:
lusindrastsr
lusindrastsr
26.04.2022
1.Периметр правильного треугольника, вписанного в окружность равен

Р=3R*sqrt(3)

Откуда

R=P/3*sqrt(3)=45/3*sqrt(3)=15*sqrt(3)

Радиус окружности описанной около восьмиугольника определяется по формуле

R=a/2sin(360/16)=a/2sin(22,5°)

Откуда

a=R*2sin(22,5°)=2*15*sqrt(3)*sin(22,5°)=30*1,7*0,38=19,38

 

 

2. Площадь квадрата равна

S=a^2

Определим радиус окружности

R^2=a^2+a^2=2a^2

Площадь круга равна

Sк=pi*R^2=2*pi*a^2=144*pi

 

 

 

3. L=pi*r*a/180, где a – градусная мера дуги, r- радиус окружности

L=pi*3*150/180=2,5*pi

 

4. Сторона квадрата равна p/4=48/4=12

Диагональ квадрата равна

d^2=a^2+a^2=144+144=288

d=12*sqrt(2)

Радиус квадрата вписанного в окружность равна

R=d/2=6*sqrt(2)

Сторона правильного пятиугольника L, вписанная в эту окружность равна

L=2R*sin(36°)=12*sqrt(2)*sin(36°)=12*1,4*0,588=9,88

 

5. Площадь кольца находим по формуле:

S=pi*  (R^2−r^)

S=pi*(7^2-3^2)=pi*(49-9)=40*pi

 

6. Треугольник равносторонний, так как угол равен 60°, радиус окружности равен 4

Найдем площадь треугольника по формуле

Sт=R^2*sqrt(3)/4

Sт=16*sqrt(3)/4=4*sqrt(3)

Найдем площадь сектора по формуле

Sc=pi*R^2*(60/360)=pi*16/6==8*pi/3

Найдем площадь сегмента

Sсм=Sс-Sт=8*pi/3-4*sqrt(3)=1,449

 

4,6(100 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ