Пирамидой, вписанной в конус, называется такая пирамида, основание которой есть многоугольник, вписанный в окружность основания конуса, а вершиной является вершина конуса. Боковые ребра пирамиды, вписанной в конус, являются образующими конуса.
Высота пирамиды = высоте конуса. Высота конуса здесь равна высоте равностороннего треугольника со сторонами, равными диаметру основания конуса.
Основание пирамиды - вписанный треугольник. А поскольку этот треугольник - прямоугольный, то его гипотенуза является диаметром основания конуса.
D=√(12²+16²)=20 см
Диаметр конуса = стороне его осевого сечения, т.к. оно - правильный треугольник.
Формула высоты равностороннего треугольника
h=(a√3):2
h=(20√3):2=10√3 см
b1=7
b6=224
b6=b1*q^5
224=7*q^5
q^5=32
q=2
тогда получаем:
b2=b1*q=7*2=14
b3=b2*q=14*2=28
b4=b3*q=28*2=56
b5=b4*q=56*2=112