1. АС=1, АВ=корень из 2(По теореме Пифогора: 1²+1²=АВ²)угол ВАС=45 градусов. Вертор АС*Вектор АВ=1*√2*√2/2(cos45)=12.=0, т.к угол между ними равен 90,а cos90 равер 03. надо отложить вектора от одной точки. предположим, АС и СК(равное BD ) произведение будет равно ноль, т.к угол АСD=45 и АВD=45⇒угол между векторами равен 90, cos90=0
Найдем смежный угол с углом в 107 градусов. 1) 180 -107= 73 градуса. При пересечении двух параллельных прямых секущей образуются вертикальные углы, которые равны. В условии они по 73 градуса каждый. Рассмотрим треугольник, который образован биссектрисой угла 107 градусов, вертикальным углом и углом, который надо найти ( под каким углом пересекает биссектриса вторую прямую ). Сумма углов треугольника равна 180 градусам. 2) 107 : 2 = 53,5 градуса ( т.к биссектриса делит угол пополам ). 3) 180 - 53,5 - 73 = 53,5 градуса.
Пусть A и B – две соседние вершины правильного многоугольника. Проведем биссектрисы углов многоугольника из вершин A и B. Пусть O – точка их пересечения. Треугольник AOB – равнобедренный с основанием AB и углами при основании, равными α / 2, где α – градусная мера угла многоугольника. Соединим точку O с вершиной C, соседней с B. Треугольники AOB и BOC равны по первому признаку равенства треугольников (теорема 4.1), так как AB = BC, OB – общая сторона, OBC = α / 2 = OBA. Отсюда имеем OC = OB = OA. OCB = α / 2. Так как C = α, то CO – биссектриса угла C. Аналогично, рассматривая последовательно вершины, соседние с ранее рассмотренными, получаем, что каждый треугольник, у которого одна сторона – сторона многоугольника, а противолежащая вершина – точка O, является равнобедренным. Все эти треугольники имеют равные боковые стороны и равные высоты, опущенные на основания. Отсюда следует, что все вершины треугольника равноудалены от точки O на расстояние длины боковой стороны и лежат на одной окружности, а все стороны многоугольника касаются окружности с центром в точке O и радиусом, равным высотам треугольников, опущенным из вершины O.
произведение будет равно ноль, т.к угол АСD=45 и АВD=45⇒угол между векторами равен 90, cos90=0