1. R - радиус описанной окружности
a-сторона правильного треугольника
стороны правильного треугольника равны 45/3=15см
a/sin(pi/3)=2*R
так же радиус можно найти по формуле R=b/(2*sin(pi/N))
b- сторона правильного многоугольника
N- количсетво углов в многоугольнике (равно количеству сторон)
приравниваем две формулы, выражаем b.
2. площадь квадрата равна квадрату его стороны, значит сторона квадрата равны корню квадратному из 72
опять используем известную уже формулу радиуса описанной окружности, R=b/(2*sin(pi/N)) и найдём радиус окружности.
площадь круга равна pi*R^{2} (число пи умноженнное на квадрат радиуса)
4. необходимо использовать формулы из задачи 1.
5. площадь вписанного 6_угольника S=(3sqrt{3}*a^{2})/2, отсюда находим сторону а и используем ее в следуещей формуле, откуда мы находим радиус окружности R=а/(2*sin(pi/N))
l=2*pi*R - длина окружности
6. площадь сектора находится по формуле S=frac{pi*R^{2}*alpha}{360}
Если треугольники подобны, то каждая из подобных сторон большего треугольника меньше в n раз, чем у меньшего, значит и периметр большего тр. тоже меньше периметра меньшего в n раз, если предположить что сторона 3см подобна стороне 15см, то n=5, если сторна 7см подобна стороне 35 см, то n тоже=5, следовательно, что сторона 6см подобна третьей стороне то она равна 6*n=6*5=30, можно проверить через периметр. периметр меньшего треугольника равен 16см, а периметр большего получается равен 80см, 80:5=16. значит длина третьей стороны треугольника равна 30 см.
Но трапеция — четырехугольник, у которого две стороны параллельны, а две стороны не параллельны.
Нарисуем трапецию АВСД, отвечающую условию задачи.
Отложим большее основание АД и из А возведем перпендикуляр АН.
Он будет высотой равнобедренного прямоугольного треугольника ВАС, проведенной из вершины прямого угла ВАС к меньшему основанию ВС
( гипотенузе треугольника ВАС), т.к. треугольник равнобедренный, и будет также высотой трапеции.
Высота АН является и медианой - треугольник равнобедренный,- а медиана прямоугольного треугольника равна половине гипотенузы:
h=10:2=5 см.
Теперь осталось вычислить площадь трапеции, которая равна произведению ее высоты на полусумму оснований:
S=h(a+b):2
S=5*(10+20):2=75 см²
Рисунок во вложении.