№1: . №2:
.
№1.
Пусть , тогда
- секущая.
Теорема: "При пересечении двух параллельных прямых секущей, сумма односторонних углов равна .
, по условию.
и
- односторонние углы
№2.
Обозначим данные прямые буквами
Пусть - секущая прямых
и
Теорема: "При пересечении двух параллельных прямых секущей, накрест лежащие углы равны".
и
- накрест лежащие при пересечении
и
секущей
, однако
.
и
- не параллельны.
============================================================
Свойство: "Вертикальные углы равны".
Свойство: "Сумма смежных углов равна ".
Рассмотрим углы, образовавшиеся при пересечении прямых и
, по свойству вертикальных углов.
, по свойству смежных углов.
, по свойству вертикальных углов.
===========================================================
Рассмотрим углы, образовавшиеся при пересечении прямых и
.
, по свойству вертикальных углов.
, по свойству смежных углов.
, по свойству вертикальных углов.
Синус определим из основной тригонометрической формулы:
sinA=V(1-cos²A)=V(1-(0,8)²)=V(1-0,64)=V 0,36=0,6. Итак, АВ=9/0,6=15.