Номер 1
ON-биссектриса треугольника МОК
ЕН-высота треугольника DEC
BP-медиана треугольника АВD
Номер 2
Треугольник равнобедренный по условию задачи,т к РК=РМ
<РНК=90 градусов,т к РЕ-перпендикуляр
<КРН=42:2=21 градус,т к РЕ-биссектриса
Номер 3
Треугольники равны по 2 признаку равенства треугольников-по стороне и двум прилежащим к ней углам
АО=ОD;<BAO=<CDO; по условию задачи
<АОВ=<СОD,как вертикальные
Номер 4
В итоге получились два треугольника,которые равны по 3 признаку равенства треугольников-по трём сторонам
LM=NM;LD=ND; по условию задачи
МD-общая сторона
Равенство треугольников MLD и MND доказано,а это значит,что все соответствующие углы равны между собой
<LMD=<DMN,следовательно,МD-биссектриса угла LMN
Номер 5
При пересечении двух диаметров получились два равных равнобедренных треугольника
МО=ОК;НО=ОР;как радиусы
<МОН=<NOK,как вертикальные
Треугольники равны по 1 признаку равенства треугольников-по двум сторонам и углу между ними
<ОМН=<ОРК=40 градусов
Объяснение:
2) по условию АВ=АТ, значит треугольник АВТ- равнобедренный и углы при основании раны. Угол АВТ=угол ВТА= (180-10):2=85*.
3) углы ВТА И АТС- смежные и их сумма = 180*, значит угол АТС=95*.
4) рассмотрит треугольник АТС. Сумма углов любого произвольного треугольника = 180*, значит угол ТАС=180-(10+95)=75*.
ОТВЕТ: 10*, 95*, 75*.