При решении я предполагаю, что автору задачи известно, что медианы делят треугольник на шесть, равных по площади, как отностятся площади треугольников, если есть общая высота и прочее... если что будет не понятно - спршивайте.
1. Skldc = (1/3)*Sabc = 8;
2. (3/4)*Sabc = m*n/2 (прямая MN - средняя линяя, и отсекает четверть площади треугольника); Sabc = 2*m*n/3;
3. Треугольники СОА и СОМ равны - это прямоугогльные треугольники с равными углами и общим катетом. АО = ОМ, поэтому треугольники АОL и LOM тоже равны.
Но самое главное, BL/AL = СВ/АС = 2*CM/AC = 2*MO/OA = 2.
Поэтому Smlb = 2*Smla = 4*Solm, а Smlb + Smla = Sabc/2;
Имеем
4*Solm + 2*Solm = Sabc/2; Solm = 1/12;
4. Это то же самое, что найти площадь треугольника со сторонами 27,29 и 26*2 = 52; понять это очень просто - треугольник достраивается до параллелограмма (медиану продолжаем за основание на свою длину и соединяем полученную точку с концами сторон). Диагонали делят праллелограмм на 2 части, равные по площади. Поэтому и получается, что площадь треугольника со сторонами a,b и медианой m равна площади треугольника со сторонами a, b и 2*m. Считаем по формуле Герона (слава Гейтсу, есть Excel) полупериметр p= 54, p-a = 27;p-b = 25; p - c1 = 2; (c1 это 52 = 2*26); ясно видно, что произведение равно 27^2*100, то есть площадь 270.
5. Всё, что надо знать - формула S = a*b*sinC/2; Доли площадей треугольников АЕМ EBF и MFC от площади АВС определяются именно по ней, к примеру
Saem = (1/3)*AB*(2/5)*AC*sinC/2 = (1/3)*(2/5)*Sabc;
Sefm/Sabc = 1 - (1/3)*(2/5) - (2/3)*(1/6) - (5/6)*(3/5) = 23/90;
Сделаем рисунок к задаче.
Обозначим вершины параллеограмма привычными буквами АВСD.
Проведем биссектрисы углов В и С, которые пересекутся на АD в точке М.
Биссектрисы образовали со сторонами параллелограмма треугольники, причем
∠ СВМ= ∠ АМВ по свойству углов при пересечении параллельных прямых и секущей, а
∠ АВМ= ∠МВС - как половины угла В.
То же самое с углами ВСМ и СМD.
Раз углы при основании ВМ Δ АВМ и основании СМ Δ СМD равны,
оба этих треугольника - равнобедренные.
В треугольнике АВМ сторона АВ равна стороне АМ,
В треугольнике МDС сторона МD равна стороне СD.
Но АВСD- параллелограмм, и стороны АВ и CD равны по определению.
Следовательно, АМ=MD и АD=2АВ ( или 2 CD, что одно и то же)
Р АВСD= 2( АВ+АD) Подставим в значение периметра 2 АВ вместо AD.
Р АВСD= 2( АВ+2АВ)
30= 6 АВ
АВ=5 см
Ответ: Длина короткой стороны параллелограмма равна 5 см